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ABSTRACT

We assess how climate transition risk, through its effects on asset prices, could im-
pact financial stability. We characterize the distribution of financial firm asset pric-
es under three climate transition scenarios (orderly transition, disorderly transition, 
and hothouse world) in which asset re-pricing impacts widely differ, and introduce 
three systemic risk metrics, namely, climate transition expected returns, climate 
transition value-at-risk, and climate transition expected shortfalls, which account 
for average and tail effects for the value of financial firms from transition scenarios. 
For European financial firms over the period 2013-2020, we find that banks and 
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real estate firms experience the highest and lowest systemic impacts from a dis-
orderly transition, and that the cost of rescuing more risk-exposed financial firms 
from climate transition losses is relatively manageable. Simulations over a five-year 
period show that a disorderly transition implies significant costs for banks, while 
financial services and real estate firms remain more sheltered.
J.E.L. Classification: C32, C58, G01, G20, G28.
Keywords: Climate risks, financial stability, systemic risk, copulas.

NON-TECHNICAL SUMMARY

In this research we address how climate transition risk, through its effects on as-
set prices, could impact financial stability. To that end, we characterize the behav-
iour of financial firm returns conditional on the dynamics of market returns for 
green, neutral, and brown assets, reflecting low, neutral, and high vulnerability, 
respectively, to transition to a low-carbon economy. We consider three climate 
transition scenarios coherent with the narrative of the Network of Central Banks 
and Supervisors for Greening the Financial System (NGFS): disorderly transition, 
orderly transition, and no transition (hot house world), featured in terms of relative 
changes in green, neutral, and brown asset prices arising from the disruption in 
business models due to the change in the timing and speed of the adjustment 
towards a low-carbon economy. We then assess the systemic risk impact of those 
scenarios on financial firms in terms of the average return (climate transition ex-
pected return), the minimum returns with some confidence level (climate transi-
tion value-at-risk), and the average return below that minimum threshold (climate 
transition expected shortfall).

For European financial firms (banks, insurance companies, financial services com-
panies, and real estate firms) over the period 2013-2020, we find that the systemic 
impact of climate transition scenarios differs widely across financial institutions. 
Banks experience a greater systemic impact in a disorderly transition than in a hot 
house world scenario, while the opposite occurs for the other financial subsec-
tors, especially for real estate firms. We also find that the systemic impact of the 
different climate transition scenarios broadly diverges within financial firm groups 
(mainly within the bank group), yielding potential winners and losers, and we fur-
thermore study to what extent the systemic impact on financial systems varies 
across Europe.
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We assess the implications of climate-related systemic risk in terms of capital 
shortfalls. For banks, capital shortfalls are negligible in the orderly transition sce-
nario; however, in the disorderly transition and hot house world scenarios, capital 
shortfalls are sizeable and concentrated in a small number of entities, although 
those capital shortfalls can be absorbed within the banking sector. For the remain-
ing financial firms, we find that insurance firms experience small capital shortfalls 
in any climate transition risk scenario, whereas financial services and real estate 
firms experience modest capital losses in a hot house world scenario, but negli-
gible capital losses in the remaining scenarios.

Finally, a forward-looking simulation of prospective climate transition measures for 
the upcoming five-year period suggests that banks may be at a significant disad-
vantage in a disorderly transition scenario; financial services and real estate firms 
are likely to experience significant systemic risk effects in the hot house world sce-
nario; and the systemic risk impacts for insurance firms are moderate in size and 
similar across the disorderly and orderly climate transition scenarios.

1. INTRODUCTION

Transitioning towards a low-carbon economy entails risks that may impair the per-
formance of firms, with potential ramifications for financial stability. Central banks 
have warned of the potentially destabilizing effects of climate change risks1 on 
financial stability (e.g., the Bank of England, 2017; De Nederlandsche Bank, 2017; 
ESRB, 2016),2 and policymakers have underscored the potential of climate transi-

1  Climate change conveys two main type of risks: (a) physical risk, associated with the impact of 
extreme weather events such as droughts, floods, hurricanes, etc, and (b) transition risks related 
to the impact of changes in regulations, business models, technologies, and consumer prefer-
ences aimed at being consistent with a low-carbon economy. This research focuses on the effects 
of transition risks on financial stability.
2  The concerns of central banks regarding climate-related risk for financial system stability 
boosted the development of the Network for Greening the Financial System, an initiative of 
central banks and financial regulators (including the Bank of England and De Nederlandsche 
Bank). The aim of the NFGS is to foster environment and climate risk management in the fi-
nancial sector and mobilize mainstream finance to support the transition toward a sustainable 
economy.

https://www.banque-france.fr/en/financial-stability/international-role/network-greening-financial-system
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tion as a source of systemic risk.3 Therefore, assessing the impact of climate transi-
tion risks on financial firms and on the stability of the financial system is currently 
a high priority on the agenda of central banks, regulators, and investors (Carney, 
2015; European Systemic Risk Board, 2016, Campiglio et al., 2018).

In this paper, we develop an empirical setup to assess the impact of climate tran-
sition risk on financial stability. We characterize the distribution of financial firm 
returns under three different climate transition scenarios: hothouse world, disor-
derly transition, and orderly transition. Those scenarios account for the potential 
asset re-pricing effects of climate transition (Carney, 2015). As described by their 
quantiles, in the hothouse world scenario, the value of highly vulnerable (brown) 
firms to transition experience upward movements while the value of (green) firms 
with low vulnerability to transition experience downward movements; in the dis-
orderly transition scenario, green and brown firms experience upward and down-
ward movements, respectively; and in an orderly transition scenario, green, neu-
tral, and brown firm values remain in and around their median values.

We quantify the impact of each climate transition scenario on financial firm returns 
in terms of three metrics: the average return of the conditional distribution, a left 
quantile of the conditional distribution, and the average return below that condi-
tional quantile, labelled climate transition expected returns (), climate transition 
value-at-risk (), and climate transition expected shortfalls (), respectively. The three 
metrics are computed from the conditional distribution of individual financial firm 
asset returns, which captures dependence of financial firm returns with green, 
brown, and neutral asset returns under different climate transition scenarios.

We apply our methodology to European financial firms, including banks, insur-
ance companies, financial services companies, and real estate firms over the pe-
riod 2013-2020. Our main findings are that the systemic impact of climate transi-
tion scenarios differs widely across financial institutions. Banks experience more 
systemic impacts in a disorderly transition than in a hothouse world scenario, while 
the opposite occurs for the other firm types, but especially for real estate firms. 
We also find that the systemic impact of the different climate transition scenarios 
broadly diverges within the financial firm group, yielding potential winners and 
losers. Southern European financial firms are more exposed to a disorderly transi-

3  See, e.g., https://www.ecb.europa.eu/press/blog/date/2021/html/ecb.blog210318~3bbc68 
ffc5.en.html.

https://www.ecb.europa.eu/press/blog/date/2021/html/ecb.blog210318~3bbc68ffc5.en.html
https://www.ecb.europa.eu/press/blog/date/2021/html/ecb.blog210318~3bbc68ffc5.en.html
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tion scenario, while Northern European, France and the United Kingdom are more 
exposed to a hothouse world scenario. These results may be explained by domes-
tic markets in which carbon-intensity firms and energy-efficient firms represent an 
important share of the market.4

We also assess the implications of climate-related systemic risk for financial firms 
in terms of capital shortfalls (Acharya et al., 2017, Brownless and Engle, 2017). For 
banks, we document that capital shortfalls are negligible in the orderly transition 
scenario and sizeable (about 40 billion euros) in the disorderly transition scenario, 
but concentrated in a small number of entities and so absorbable within the bank-
ing sector.5 For the remaining financial firms, we find that insurance firms experi-
ence small capital shortfalls in any climate transition risk scenario, whereas finan-
cial services and real estate firms experience modest capital losses in a hothouse 
world scenario, but negligible capital losses in the remaining scenarios.

A forward-looking simulation for the upcoming five-year period shows that banks 
may be at a significant disadvantage in a disorderly transition scenario, but are 
likely to be broadly unaffected in the other two climate transition scenarios. Finan-
cial services and real estate firms are likely to experience significant systemic risk 
effects in the hothouse world scenario, but to perform better in the disorderly and 
orderly transition scenarios. In contrast, systemic impacts for insurance firms are 
moderate in size and similar across the disorderly and orderly climate transition 
scenarios.

Our study contributes to the literature that addresses the impact of climate-related 
risks on financial systems. Battiston et al. (2017), for their network-based climate 
stress-test of climate risk impact in green and brown scenarios, report that Euro-
pean bank exposure to the fossil-fuel sector is small (3%-12%), but is significant 
and heterogeneous to climate-policy sectors (40%-54%); they also report that the 
systemic impact of climate risk is expected to be moderate in an orderly transition 
scenario. Also for Europe, Weyzig et al. (2014) find that the fossil-fuel company 

4  For example, by the end of 2021, 22.31% of the market capitalization in the main Spanish stock 
index (IBEX35) belongs to NACE sectors with a high exposure to transition risk, whereas only 
10% of the market capitalization in the main Finnish stock index (OTM Helsinki) is exposed to this 
type of climate risk (Alessi and Battiston, 2021).
5  This would be in the case of allowing netting within financial firms, i.e., the capital needs of one 
firm is compensated for by the capital buffer of the remaining firms in the sector.
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revaluation risk for financial stability is limited. Using a calibrated ecological mac-
roeconomic model, Dafermos et al. (2018) argue that climate change is likely to 
damage the liquidity of firms and negatively affect credit expansion and financial 
stability, suggesting that those negative climate-induced effects could be reduced 
by green quantitative easing. Stolbova et al. (2018) report how shocks from the 
introduction of climate policies generate feedback effects between the real econ-
omy and the financial sector that reinforce mispricing and risk transmission. In a 
recent study of bank exposure to a portfolio of stranded assets, Jung et al. (2021) 
report a climate stress-testing procedure to measure the climate risk impact on 
the capital of large global banks, documenting substantial capital shortfalls for 
most of the studied banks. We add to this literature by introducing a new empirical 
framework to assess the impact of climate transition risks under different climate 
transition scenarios and the implications in terms of capital shortfalls. Our systemic 
risk measures – which can be readily computed using publicly available market 
data on individual financial firms and on market assets – can thus reflect changing 
market conditions, such as induced by the COVID-19 pandemic, and so facilitate 
timely identification of systemic climate-related risks from a financial stability per-
spective.

The remainder of the paper is laid out as follows. Section 2 develops our method-
ological approach, encompassing a definition of climate transition risk metrics, a 
description of climate transition scenarios, and our empirical modelling approach 
to quantifying the financial impact of climate transition risks. Section 3 describes 
data for European financial firms. Section 4 discusses empirical results for the sys-
temic risk impact of the different climate transition scenarios for the European 
financial system, while Section 5 provides information on the transition risk impli-
cations for capital shortfalls. Section 6 reports simulation evidence for prospective 
systemic risk impacts. Finally, Section 7 concludes.

2. METHODS

In this section, we first define the CTER, CTVaR and CTES metrics that assess the 
climate transition risk impact on financial firms. We then outline the climate transi-
tion scenarios and the dependence modelling approach to describing and esti-
mating the climate transition risk impact on financial stability under those different 
scenarios.
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2.1.  Climate transition risk metrics

Following the systemic risk literature (Acharya et al., 2017; Browless and Engle, 
2017; Adrian and Brunnermeier, 2016),6 we identify potential vulnerabilities of 
financial firm returns to different climate transition scenarios using the CTER, CT-
VaR, and CTES metrics, defined as follows.

Figure 1. Illustrates how the unconditional distribution of firm � 
(blue line) shifts in response to the potential impact of a climate 

transition scenario (red line), along with the above-defined climate 
transition risk metrics from the conditional firm returns density.

 
 
 

 

 

Figure 1. Systemic climate transition risk metrics: 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖, 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖
𝛾𝛾, and 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑖𝑖

𝛾𝛾. 

 
Financial firm returns 

 

 

 

  

0 0.1 0.2 0.3 0.4-0.1-0.2-0.3-0.4-0.5

6  For a survey of this literature, see Benoit et al. (2017).
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DEFINITION 1. CTER is the expected return of financial firm � in the event of a 
climate transition scenario 𝐶𝑇 𝑠:

where 𝑟𝑖 denotes the market returns of financial firm �, and 𝑓(𝑟𝑖|𝐶𝑇 𝑠 ) is the density 
of the returns of financial institution � conditional on 𝐶𝑇 𝑠.

DEFINITION 2. CTVaR is the maximum possible loss of a financial institution � con-
ditional on a climate transition scenario 𝐶𝑇𝑠  for a confidence level of 1−𝛾:

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾=𝐹𝑖|𝐶𝑇𝑠(𝛾)−1

where 𝐹𝑖|𝐶𝑇𝑠(·)−1  is the inverse cumulative probability distribution of 𝑟𝑖 conditional 
on 𝐶𝑇𝑠, i.e., 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾 is the 𝛾% quantile of the conditional distribution of returns: 
𝑃(𝑟𝑖≤𝐶𝑇𝑉𝑎𝑅𝑖

𝛾|𝐶𝑇 𝑠 )=𝛾.

DEFINITION 3. CTES is the expected return of the financial firm � when firm returns 
fall below the 𝐶𝑇𝑉𝑎𝑅𝑖

𝛾 in the event of a climate transition scenario 𝐶𝑇 𝑠:

𝐶𝑇𝐸𝑆𝑖
𝛾=𝐸(𝑟𝑖 |𝐶𝑇 𝑠,𝑟𝑖≤𝐶𝑇𝑉𝑎𝑅𝑖

𝛾 )= 1–𝛾 ∫   𝑟𝑖 𝑓(𝑟𝑖|𝐶𝑇𝑠) 𝑑𝑟𝑖−∞

𝐶𝑇𝑉𝑎𝑅𝑖
𝛾 

That is, 𝐶𝑇𝐸𝑆𝑖
𝛾  is the expected return value for those returns located in the 𝑦-tail of 

the conditional distribution of returns.

2.2.  Climate transition scenarios

Consistent with the narratives for climate transition risk provided by the Network 
for Greening the Financial System (2020), we consider three transition scenarios, 
characterized in terms of their potential asset re-pricing effects: hothouse world, 
disorderly transition to a green economy, and orderly transition to a green econ-
omy. Let 𝑟𝑔, 𝑟𝑛, and 𝑟𝑏 denote the market returns of green, neutral, and brown firms, 
reflecting low, medium, and large vulnerability to climate transition risk, respec-
tively. Hence, the narrative and re-pricing effects from each transition scenario are 
as follows. 

In the hothouse world scenario, current policies are preserved, emissions grow, 
and temperatures increase by more than 3ºC in a 50-year period. Policy actions 
to favour transition are implemented slowly and tardily, and investors adjust their 
expectations accordingly. In this scenario representing low climate transition risk 
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and high physical climate risks, brown firms have more time to offload strand-
ed assets without suffering a large price impact and their asset prices increase, 
while green asset prices decline as green firms lose the opportunity to boost their 
business. Thus, the relative price impact of a hothouse world scenario can be de-
scribed in terms of upward and downward movements in brown and green as-
set market returns, as described by their quantiles: 𝑟𝑔 ≤ 𝑞𝑔

𝛼 and 𝑟𝑏 ≥ 𝑞𝑏
𝛽, where the 

𝛼- and 𝛽-quantiles of green and brown asset returns are given by 𝑃(𝑟𝑔 ≤ 𝑞𝑔
𝛼)=𝛼 and 

𝑃(𝑟𝑏 ≤ 𝑞𝑏
𝛽)=1−𝛽, respectively. Arguably, the returns of neutral assets experience no 

particular impact as they are barely affected by the transition risk to a low-carbon 
economy.

In the disorderly transition scenario, an active stance is adopted through climate 
policies aimed at mitigating emissions and reducing global warming below 2ºC 
by 2070; however, those policies are introduced abruptly, resulting in higher 
transition risks. Abrupt policy constraints on the use of carbon intensive energy 
may cause operational difficulties for firms that are more exposed to risk, ulti-
mately affecting the value of their assets (e.g., assets may become stranded). In 
contrast, firms with lower exposure to transition risk face a privileged position in 
the market in the short-term. As a result, market expectations regarding green 
asset prices curve upwards, while the opposite happens with brown asset prices. 
This impact can be described in terms of upward and downward movements of 
green and brown asset market returns, characterized by their quantiles: 𝑟𝑔≥𝑞𝑔

𝛽 and 
𝑟𝑏≤𝑞𝑏

𝛼, where the 𝛼- and 𝛽-quantiles of green and brown asset returns are given 
by 𝑃(𝑟𝑏≤𝑞𝑏

𝛼)=𝛼 and 𝑃(𝑟𝑔≤𝑞𝑔
𝛽)=1−𝛽, respectively. As with the hothouse world sce-

nario, the impact of a disorderly transition on neutral asset returns is negligible, as 
those returns are barely affected by transition risks.

Finally, in the orderly transition scenario, climate policies aimed at keeping global 
warming below 2ºC in the next 50 years are implemented smoothly, allowing firms 
to progressively adapt to the new business setting. In this context, the transition risk 
is moderate; since all firms will be able to gradually adapt to the new setup, their 
values are not expected to experience abrupt changes. Investors would therefore 
expect asset returns to move around their median values (i.e., with no abrupt price 
changes), described as:, 𝑞𝑏

𝐿 ≤ 𝑟𝑏
 ≤ 𝑞𝑏

𝑈, 𝑞𝑛
𝐿 ≤ 𝑟𝑛

 ≤ 𝑞𝑛
𝑈 and 𝑞𝑔

𝐿 ≤ 𝑟𝑔
 ≤ 𝑞𝑔

𝑈, where 𝑞𝑗
𝐿 and 𝑞𝑗

𝑈 are 
the lower and upper quantiles around the median for the asset 𝑗 = 𝑔, 𝑛, 𝑏.
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Table 1. Systemic climate transition risk metrics under different climate transition scenarios. 

A. 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖 

Hothouse world ∫ 𝑟𝑟𝑖𝑖
𝑓𝑓 (𝑟𝑟𝑖𝑖,  𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔

𝛽𝛽, 𝑟𝑟𝑏𝑏 ≥ 𝑞𝑞𝑏𝑏
𝛼𝛼; 𝑟𝑟𝑛𝑛)

𝑃𝑃 ( 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔
𝛽𝛽, 𝑟𝑟𝑏𝑏 ≥ 𝑞𝑞𝑏𝑏

𝛼𝛼; 𝑟𝑟𝑛𝑛)
 𝑑𝑑𝑟𝑟𝑖𝑖

∞

−∞
 

Disorderly transition ∫ 𝑟𝑟𝑖𝑖
𝑓𝑓 (𝑟𝑟𝑖𝑖,  𝑟𝑟𝑔𝑔 ≥ 𝑞𝑞𝑔𝑔

𝛽𝛽, 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏
𝛼𝛼; 𝑟𝑟𝑛𝑛)

𝑃𝑃 ( 𝑟𝑟𝑔𝑔 ≥ 𝑞𝑞𝑔𝑔
𝛽𝛽, 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏

𝛼𝛼; 𝑟𝑟𝑛𝑛)
 𝑑𝑑𝑟𝑟𝑖𝑖

∞

−∞
 

Orderly transition ∫ 𝑟𝑟𝑖𝑖
𝑓𝑓(𝑟𝑟𝑖𝑖,  𝑞𝑞𝑏𝑏

𝐿𝐿 ≤ 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏
𝑈𝑈, 𝑞𝑞𝑔𝑔

𝐿𝐿 ≤ 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔
𝑈𝑈, 𝑞𝑞𝑛𝑛

𝐿𝐿 ≤ 𝑟𝑟𝑛𝑛 ≤ 𝑞𝑞𝑛𝑛
𝑈𝑈)

𝑃𝑃( 𝑞𝑞𝑏𝑏
𝐿𝐿 ≤ 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏

𝑈𝑈, 𝑞𝑞𝑔𝑔
𝐿𝐿 ≤ 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔

𝑈𝑈, 𝑞𝑞𝑛𝑛
𝐿𝐿 ≤ 𝑟𝑟𝑛𝑛 ≤ 𝑞𝑞𝑛𝑛

𝑈𝑈, 𝑟𝑟𝑖𝑖 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖
𝛾𝛾)

 𝑑𝑑𝑟𝑟𝑖𝑖
∞

−∞
 

B. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖
𝛾𝛾 

Hothouse world 𝐹𝐹𝑖𝑖|𝑟𝑟𝑔𝑔≤𝑞𝑞𝑔𝑔
𝛽𝛽,𝑟𝑟𝑏𝑏≥𝑞𝑞𝑏𝑏

𝛼𝛼;𝑟𝑟𝑛𝑛
−1 (𝛾𝛾) 

Disorderly transition 𝐹𝐹𝑖𝑖|𝑟𝑟𝑔𝑔≥𝑞𝑞𝑔𝑔
𝛽𝛽,𝑟𝑟𝑏𝑏≤𝑞𝑞𝑏𝑏

𝛼𝛼;𝑟𝑟𝑛𝑛
−1 (𝛾𝛾) 

Orderly transition 𝐹𝐹𝑖𝑖| 𝑞𝑞𝑏𝑏
𝐿𝐿≤𝑟𝑟𝑏𝑏≤𝑞𝑞𝑏𝑏

𝑈𝑈,𝑞𝑞𝑔𝑔𝐿𝐿≤𝑟𝑟𝑔𝑔≤𝑞𝑞𝑔𝑔𝑈𝑈,𝑞𝑞𝑛𝑛𝐿𝐿≤𝑟𝑟𝑛𝑛≤𝑞𝑞𝑛𝑛𝑈𝑈
−1  (𝛾𝛾) 

C. 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑖𝑖 

Hothouse world ∫ 𝑟𝑟𝑖𝑖
𝑓𝑓 (𝑟𝑟𝑖𝑖,  𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔

𝛽𝛽, 𝑟𝑟𝑏𝑏 ≥ 𝑞𝑞𝑏𝑏
𝛼𝛼; 𝑟𝑟𝑛𝑛)

𝑃𝑃 ( 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔
𝛽𝛽, 𝑟𝑟𝑏𝑏 ≥ 𝑞𝑞𝑏𝑏

𝛼𝛼, 𝑟𝑟𝑖𝑖 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖
𝛾𝛾; 𝑟𝑟𝑛𝑛)

 𝑑𝑑𝑟𝑟𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖

𝛾𝛾

−∞
 

Disorderly transition ∫ 𝑟𝑟𝑖𝑖  
𝑓𝑓 (𝑟𝑟𝑖𝑖,  𝑟𝑟𝑔𝑔 ≥ 𝑞𝑞𝑔𝑔

𝛽𝛽, 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏
𝛼𝛼; 𝑟𝑟𝑛𝑛)

𝑃𝑃 ( 𝑟𝑟𝑔𝑔 ≥ 𝑞𝑞𝑔𝑔
𝛽𝛽, 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏

𝛼𝛼, 𝑟𝑟𝑖𝑖 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖
𝛾𝛾; 𝑟𝑟𝑛𝑛)

 𝑑𝑑𝑟𝑟𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖

𝛾𝛾

−∞
 

Orderly transition ∫  𝑟𝑟𝑖𝑖
𝑓𝑓(𝑟𝑟𝑖𝑖,  𝑞𝑞𝑏𝑏

𝐿𝐿 ≤ 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏
𝑈𝑈, 𝑞𝑞𝑔𝑔

𝐿𝐿 ≤ 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔
𝑈𝑈, 𝑞𝑞𝑛𝑛

𝐿𝐿 ≤ 𝑟𝑟𝑛𝑛 ≤ 𝑞𝑞𝑛𝑛
𝑈𝑈)

𝑃𝑃( 𝑞𝑞𝑏𝑏
𝐿𝐿 ≤ 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏

𝑈𝑈, 𝑞𝑞𝑔𝑔
𝐿𝐿 ≤ 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔

𝑈𝑈, 𝑞𝑞𝑛𝑛
𝐿𝐿 ≤ 𝑟𝑟𝑛𝑛 ≤ 𝑞𝑞𝑛𝑛

𝑈𝑈, 𝑟𝑟𝑖𝑖 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖
𝛾𝛾)

 𝑑𝑑𝑟𝑟𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖

𝛾𝛾

−∞
 

Notes. The semicolon in the density function 𝑓𝑓(·; 𝑟𝑟𝑛𝑛) and the probability of the climate scenario 𝑃𝑃(·; 𝑟𝑟𝑛𝑛) indicate that 

density or probability is defined taking into account possible interactions between the variables that could take place 

indirectly through the neutral asset (𝑟𝑟𝑛𝑛). 

 

 

Table 1. Systemic climate transition risk metrics under different climate transition scenarios. 

A. 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖 

Hothouse world ∫ 𝑟𝑟𝑖𝑖
𝑓𝑓 (𝑟𝑟𝑖𝑖,  𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔

𝛽𝛽, 𝑟𝑟𝑏𝑏 ≥ 𝑞𝑞𝑏𝑏
𝛼𝛼; 𝑟𝑟𝑛𝑛)

𝑃𝑃 ( 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔
𝛽𝛽, 𝑟𝑟𝑏𝑏 ≥ 𝑞𝑞𝑏𝑏

𝛼𝛼; 𝑟𝑟𝑛𝑛)
 𝑑𝑑𝑟𝑟𝑖𝑖

∞

−∞
 

Disorderly transition ∫ 𝑟𝑟𝑖𝑖
𝑓𝑓 (𝑟𝑟𝑖𝑖,  𝑟𝑟𝑔𝑔 ≥ 𝑞𝑞𝑔𝑔

𝛽𝛽, 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏
𝛼𝛼; 𝑟𝑟𝑛𝑛)

𝑃𝑃 ( 𝑟𝑟𝑔𝑔 ≥ 𝑞𝑞𝑔𝑔
𝛽𝛽, 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏

𝛼𝛼; 𝑟𝑟𝑛𝑛)
 𝑑𝑑𝑟𝑟𝑖𝑖

∞

−∞
 

Orderly transition ∫ 𝑟𝑟𝑖𝑖
𝑓𝑓(𝑟𝑟𝑖𝑖,  𝑞𝑞𝑏𝑏

𝐿𝐿 ≤ 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏
𝑈𝑈, 𝑞𝑞𝑔𝑔

𝐿𝐿 ≤ 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔
𝑈𝑈, 𝑞𝑞𝑛𝑛

𝐿𝐿 ≤ 𝑟𝑟𝑛𝑛 ≤ 𝑞𝑞𝑛𝑛
𝑈𝑈)

𝑃𝑃( 𝑞𝑞𝑏𝑏
𝐿𝐿 ≤ 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏

𝑈𝑈, 𝑞𝑞𝑔𝑔
𝐿𝐿 ≤ 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔

𝑈𝑈, 𝑞𝑞𝑛𝑛
𝐿𝐿 ≤ 𝑟𝑟𝑛𝑛 ≤ 𝑞𝑞𝑛𝑛

𝑈𝑈, 𝑟𝑟𝑖𝑖 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖
𝛾𝛾)

 𝑑𝑑𝑟𝑟𝑖𝑖
∞

−∞
 

B. 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖
𝛾𝛾 

Hothouse world 𝐹𝐹𝑖𝑖|𝑟𝑟𝑔𝑔≤𝑞𝑞𝑔𝑔
𝛽𝛽,𝑟𝑟𝑏𝑏≥𝑞𝑞𝑏𝑏

𝛼𝛼;𝑟𝑟𝑛𝑛
−1 (𝛾𝛾) 

Disorderly transition 𝐹𝐹𝑖𝑖|𝑟𝑟𝑔𝑔≥𝑞𝑞𝑔𝑔
𝛽𝛽,𝑟𝑟𝑏𝑏≤𝑞𝑞𝑏𝑏

𝛼𝛼;𝑟𝑟𝑛𝑛
−1 (𝛾𝛾) 

Orderly transition 𝐹𝐹𝑖𝑖| 𝑞𝑞𝑏𝑏
𝐿𝐿≤𝑟𝑟𝑏𝑏≤𝑞𝑞𝑏𝑏

𝑈𝑈,𝑞𝑞𝑔𝑔𝐿𝐿≤𝑟𝑟𝑔𝑔≤𝑞𝑞𝑔𝑔𝑈𝑈,𝑞𝑞𝑛𝑛𝐿𝐿≤𝑟𝑟𝑛𝑛≤𝑞𝑞𝑛𝑛𝑈𝑈
−1  (𝛾𝛾) 

C. 𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑖𝑖 

Hothouse world ∫ 𝑟𝑟𝑖𝑖
𝑓𝑓 (𝑟𝑟𝑖𝑖,  𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔

𝛽𝛽, 𝑟𝑟𝑏𝑏 ≥ 𝑞𝑞𝑏𝑏
𝛼𝛼; 𝑟𝑟𝑛𝑛)

𝑃𝑃 ( 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔
𝛽𝛽, 𝑟𝑟𝑏𝑏 ≥ 𝑞𝑞𝑏𝑏

𝛼𝛼, 𝑟𝑟𝑖𝑖 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖
𝛾𝛾; 𝑟𝑟𝑛𝑛)

 𝑑𝑑𝑟𝑟𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖

𝛾𝛾

−∞
 

Disorderly transition ∫ 𝑟𝑟𝑖𝑖  
𝑓𝑓 (𝑟𝑟𝑖𝑖,  𝑟𝑟𝑔𝑔 ≥ 𝑞𝑞𝑔𝑔

𝛽𝛽, 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏
𝛼𝛼; 𝑟𝑟𝑛𝑛)

𝑃𝑃 ( 𝑟𝑟𝑔𝑔 ≥ 𝑞𝑞𝑔𝑔
𝛽𝛽, 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏

𝛼𝛼, 𝑟𝑟𝑖𝑖 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖
𝛾𝛾; 𝑟𝑟𝑛𝑛)

 𝑑𝑑𝑟𝑟𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖

𝛾𝛾

−∞
 

Orderly transition ∫  𝑟𝑟𝑖𝑖
𝑓𝑓(𝑟𝑟𝑖𝑖,  𝑞𝑞𝑏𝑏

𝐿𝐿 ≤ 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏
𝑈𝑈, 𝑞𝑞𝑔𝑔

𝐿𝐿 ≤ 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔
𝑈𝑈, 𝑞𝑞𝑛𝑛

𝐿𝐿 ≤ 𝑟𝑟𝑛𝑛 ≤ 𝑞𝑞𝑛𝑛
𝑈𝑈)

𝑃𝑃( 𝑞𝑞𝑏𝑏
𝐿𝐿 ≤ 𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏

𝑈𝑈, 𝑞𝑞𝑔𝑔
𝐿𝐿 ≤ 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔

𝑈𝑈, 𝑞𝑞𝑛𝑛
𝐿𝐿 ≤ 𝑟𝑟𝑛𝑛 ≤ 𝑞𝑞𝑛𝑛

𝑈𝑈, 𝑟𝑟𝑖𝑖 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖
𝛾𝛾)

 𝑑𝑑𝑟𝑟𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑖𝑖

𝛾𝛾

−∞
 

Notes. The semicolon in the density function 𝑓𝑓(·; 𝑟𝑟𝑛𝑛) and the probability of the climate scenario 𝑃𝑃(·; 𝑟𝑟𝑛𝑛) indicate that 

density or probability is defined taking into account possible interactions between the variables that could take place 

indirectly through the neutral asset (𝑟𝑟𝑛𝑛). 
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2.3.  Modelling the financial impacts of climate transition risks

The CTER, CTVaR, and CTES metrics under the three climate transition scenarios 
are presented in Table 1. Empirical estimation of those metrics requires knowl-
edge of the joint density of the returns of financial firm � and the climate transition 
scenario, and the probability of that climate transition scenario unfolding (that is, 
of the conditional density for each financial institution).

We characterize the probability distribution of returns using copula functions.7 
Copulas allow marginal and dependence features to be connected, in such a way 
that the probability distribution of two market returns can be expressed in terms 
of a bivariate copula function 𝐶 as 𝐹(𝑟𝑗,𝑟ℎ)=𝐶𝑗ℎ(𝐹𝑗(𝑟𝑗), 𝐹ℎ(𝑟ℎ)), where 𝐶 is a cumulative 
distribution copula with uniform marginal variables given by 𝐹𝑗(𝑟𝑗)=𝑢𝑗, 𝐹ℎ(𝑟ℎ)=𝑢ℎ, 
and where 𝐹𝑗(𝑟𝑗) and 𝐹ℎ(𝑟ℎ) denote the marginal distribution function of the j and h 
stock returns that stem from the corresponding densities,  and . Likewise, 
the conditional marginal distribution can be obtained from the conditional copula 
function as . Copulas can also be extended to the 
multivariate case, i.e., the probability distribution for the trivariate case can be writ-
ten in terms of a copula function as , while the con-
ditional marginal distribution for two variables or one variable is obtained from the 
conditional copula as  and , 
with  and . By separating marginal 
and joint dependence features, copulas flexibly model multivariate distributions, 
reporting information on conditional dependence, joint tail dependence, and 
nonlinearities to accurately assess the systemic impact of tail events such as ex-
treme climate transition scenarios.8

Using copulas, we can express the probability of each climate transition scenario 
and the joint density between that scenario and the returns of financial firm i as 
follows.

Result 1. The probability of a disorderly transition scenario is given by:

7  For a detailed analysis of copulas, see Joe (1997) and Nelsen (2006).
8  This modelling flexibility explains why this framework is the backbone of scenarios for stress 
testing. See for instance: shorturl.at/GHQV7.
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where . The 
probability for the hothouse world scenario is computed by swapping around the 
green and brown subscripts. The probability for an orderly transition scenario is 
given by:

where:

, with , and  

 with  for ; and where  

and .

Proof: See Appendix.

Interestingly, copulas in Result 1 arise from a specific hierarchical dependence 
structure among green, neutral, and brown assets, shown in the upper panel of 
Figure 2. This dependence is given by a C-vine copula,9 where the central node 
in the first tree ( ) represents neutral asset returns, and the edges connecting two 
nodes capture joint dependence between the returns of those nodes through 
bivariate copulas, allowing conditional dependence between those two variables 
to be computed. Likewise, the second tree ( ) reflects two nodes representing 
green and brown asset returns conditional on neutral asset returns, with the 
edges providing information on the joint dependence between those variables 
as given by the corresponding copula. For the three bivariate copulas arising 

9  For an analysis of vine copulas, see Bedford and Cooke (2002); Kurowicka and Cooke(2006); 
Aas et al. (2009). In the trivariate case, the C- and D-vine copulas are equivalent when the pivotal 
node in the first tree of the C-vine is the central node in the first tree of the D-vine.
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from this dependence structure, we can obtain all conditional copulas involved 
in Result 1 necessary to compute the probability of different climate transition 
scenarios.

Figure 2. Dependence structure between market and financial firm returns.
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Result 2. The joint density for the returns of a financial institution i and a disorderly 
transition scenario is:

where  is given by:

. Swapping 
around the green and brown subscripts, the density for the hothouse world sce-
nario follows. As for the orderly transition scenarios, density is computed as:
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where:

Proof: See Appendix.

Remarkably, in Result 2 the conditional copulas required to obtain the joint densi-
ties under different climate transition scenarios arise from a specific hierarchical 
dependence structure between the financial institution and market assets, repre-
sented in the lower (shaded) panel of Figure 2 through a C-vine copula. The first 
tree ( ) connects the returns of the financial firm with the two nodes of the second 
tree ( ) of the hierarchical dependence of the assets in the market. For the three 
bivariate copulas arising from this dependence structure, we can obtain all the 
conditional copulas involved in Result 2.

From Results 1 and 2 we now can now compute the value. For a disorderly transi-
tion scenario,10 this is:

 

while for the hothouse world scenario, the value of the 𝐶𝑇𝐸𝑅𝑖 is obtained by swap-
ping around the green and brown subscripts. For an orderly transition scenario, 
𝐶𝑇𝐸𝑅𝑖 is computed as:

10  Proofs of Eqs. (5) and (6) are reported in the Appendix.



Climate transition risks and financial stability.

19

 

where:

Proof: See Appendix.

Remarkably, in Result 2 the conditional copulas required to obtain the joint densi-
ties under different climate transition scenarios arise from a specific hierarchical 
dependence structure between the financial institution and market assets, repre-
sented in the lower (shaded) panel of Figure 2 through a C-vine copula. The first 
tree ( ) connects the returns of the financial firm with the two nodes of the second 
tree ( ) of the hierarchical dependence of the assets in the market. For the three 
bivariate copulas arising from this dependence structure, we can obtain all the 
conditional copulas involved in Result 2.

From Results 1 and 2 we now can now compute the value. For a disorderly transi-
tion scenario,10 this is:

 

while for the hothouse world scenario, the value of the 𝐶𝑇𝐸𝑅𝑖 is obtained by swap-
ping around the green and brown subscripts. For an orderly transition scenario, 
𝐶𝑇𝐸𝑅𝑖 is computed as:

10  Proofs of Eqs. (5) and (6) are reported in the Appendix.

 

   
 
As for the values of  and , we need information on the joint probabil-
ity of each climate transition scenario and the returns of firm i, and also information 
on the joint density between that scenario and those returns, given that returns 
for firm i are below a threshold given by . This information is described as 
follows.

Result 3. The probability of a disorderly transition scenario when returns for firm i 
are below a threshold given by  is:

The probability for the hothouse world scenario follows by swapping around the 
green and brown subscripts. For an orderly transition scenario, this is:

 

Proof: See Appendix.

Result 4. The joint density for a disorderly transition scenario and the returns of a 
financial institution i when those returns are below a threshold  is:

The density for the hothouse world scenario follows by swapping around the 
green and brown subscripts. For an orderly transition scenario, this is:
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Proof: See Appendix.

We can now obtain the value of  under different transition scenarios. 
For a disorderly transition scenario, the  is the quantile that verifies that 

, namely:

where the ratio of probabilities, denoted by , derives from Result 1 and 3. 
Hence, given that , the value of  is computed 
as:11

For the hothouse world and orderly transition scenarios, the value of  is 
given by Eq. (11) but the ratio of probabilities is given by the corresponding .

Finally, the tail risk effects from a disorderly transition scenario can be quantified 
with the  as:

 

where  is given by Result 3. Swapping around the 
green and brown subscripts we obtain  for the hothouse world transition 
scenario. For an orderly transition scenario,  is given by:

11  Proofs of Eqs. (11)-(13) are reported in the Appendix.
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2.4.  Estimation

Estimation of the systemic impact of climate transition scenarios requires informa-
tion on the copula functions as represented in Figure 2. Those copulas are esti-
mated using the two-step inference functions for margins (IFM) approach (Joe and 
Xu, 1996).

In the first IFM step, we estimate the univariate marginal distribution functions of 
the 𝑗 =  𝑖, 𝑔, 𝑛, 𝑏 returns by maximum likelihood (ML), where the dynamics of those 
returns is assumed to be described by an autoregressive moving average (ARMA) 
model of order m and k:

where 𝜙𝑞 and 𝜑𝑟 denote the parameters of the AR and MA components of the 
model, and 𝜖𝑗,𝑡 is the stochastic component that is assumed to have a zero mean 
and variance with dynamic behaviour as represented by a threshold generalized 
autoregressive conditional heteroskedasticity (TGARCH) model:

where 𝜔0, 𝛽𝑞 and 𝛼ℎ are the parameters of the volatility model, and where 1𝑡−ℎ = 1 
if 𝜖𝑗,𝑡−ℎ < 0, and otherwise is zero. The parameter 𝛿ℎ accounts for the asymmetric 
effect of shocks, thus, for 𝛿ℎ > 0, negative shocks have more impact on variance 
than positive shocks. Asymmetries and fat tails in the marginal distribution of re-
turns are captured by assuming that the return distribution is given by Hansen’s 
(1994) skewed-t density with 𝜗 (2 < 𝜗 < ∞) degrees of freedom and asymmetry 
parameter 𝜆 (−1 <  𝜆 < 1). The number of lags for the mean and variance of returns 
is selected using the Akaike information criterion (AIC). From marginal models, 
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we obtain the pseudo-sample observations for the copula as given by the integral 
probability transformation of standardized returns.

Table 2. Bivariate copula models. 

 

 

Table 2. Bivariate copula models.  

Name Copula specification Parameter Tail dependence 

Independent 𝑢𝑢1𝑢𝑢2 — — 

Gaussian Φ(Φ−1(𝑢𝑢1), Φ−1(𝑢𝑢2); ρ) 𝜌𝜌 No tail dependence: U L 0 =  =  

Student t Tη(Tη
−1(𝑢𝑢1), Tη

−1(𝑢𝑢2); η, ρ) 𝜌𝜌, η Symmetric tail dependence: 𝜆𝜆𝐿𝐿 = 𝜆𝜆𝑈𝑈 =
2tη+1(−√(η + 1)(1 − ρ) (1 + ρ)⁄ ) 

Clayton (𝑢𝑢1
−𝜃𝜃 + 𝑢𝑢2

−𝜃𝜃 − 1)−1
𝜃𝜃 𝜃𝜃 𝜆𝜆𝐿𝐿 = 2−1

𝜃𝜃,  𝜆𝜆𝑈𝑈 = 0 

Gumbel exp (− ((−log(𝑢𝑢1))𝜃𝜃 + (−log(𝑢𝑢2))𝜃𝜃) 
1
𝜃𝜃) 𝜃𝜃 𝜆𝜆𝐿𝐿 = 0,  𝜆𝜆𝑈𝑈 = 2 − 2

1
θ 

BB1 (1 + ((𝑢𝑢1
−𝜃𝜃 − 1)𝛿𝛿 + (𝑢𝑢2

−𝜃𝜃 − 1)𝛿𝛿)
1
𝛿𝛿)

−1
𝜃𝜃

 𝜃𝜃, 𝛿𝛿 𝜆𝜆𝐿𝐿 = 2− 1
𝜃𝜃𝜃𝜃,  𝜆𝜆𝑈𝑈 = 2 − 2

1
𝛿𝛿 

Notes. 𝜆𝜆𝑈𝑈 (𝜆𝜆𝐿𝐿). denotes upper (lower) tail dependence. Time-varying dependence is assumed by allowing parameters to change over time, with dynamics given by an 

ARMA(1,q)-type process (Patton, 2006) for the linear dependence parameter of the Gaussian and student-t copulas, given by 𝜌𝜌𝑡𝑡 = Λ1 (𝜓𝜓0 + 𝜓𝜓1𝜌𝜌𝑡𝑡−1 +

𝜓𝜓2
1
𝑞𝑞 ∑ Φ−1(𝑢𝑢𝑡𝑡−𝑗𝑗)Φ−1(𝑣𝑣𝑡𝑡−𝑗𝑗)𝑞𝑞

𝑗𝑗=1  ), where Λ1(𝑥𝑥) = 1−exp(−𝑥𝑥)
1+exp(−𝑥𝑥) is the modified logistic transformation that keeps the value of 𝜌𝜌𝑡𝑡 in (-1,1), and where Φ−1(𝑥𝑥) is the 

standard normal quantile function (Φ−1(𝑥𝑥) is replaced by Tη
−1(x) for the student-t copula). For the parameters of the Clayton, Gumbel, and BB1 copulas, we assume 

that dynamics is given by  𝜃𝜃𝑡𝑡 = Λ2 (𝜔̅𝜔𝜃𝜃 + 𝛽̅𝛽𝜃𝜃𝜃𝜃𝑡𝑡−1 + 𝛼̅𝛼𝜃𝜃
1
𝑞𝑞 ∑ |𝑢𝑢𝑡𝑡−𝑗𝑗 − 𝑣𝑣𝑡𝑡−𝑗𝑗|𝑞𝑞

𝑗𝑗=1  ) (in the same way for 𝛿𝛿 in the BB1 copula), where — as in Patton (2006) — q is set to 

26 and Λ2(𝑥𝑥) = 100
1+exp(−𝑥𝑥) for the Clayton copula, Λ2(𝑥𝑥) = 1 + 99

1+exp(−𝑥𝑥) for the Gumbel copula, and Λ2(𝑥𝑥) = 1
1+exp(−𝑥𝑥) for the BB1 copula. We also use 90º rotated 

copulas for the Clayton, Gumbel, and BB1 to allow for negative dependence. The 90º rotated copula is expressed as 𝐶𝐶90(𝑢𝑢1, 𝑢𝑢2) = 𝑢𝑢2 − 𝐶𝐶( 1 − 𝑢𝑢1, 𝑢𝑢2) where 𝐶𝐶(·,·) 

is the corresponding standard copula. 
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1+exp(−𝑥𝑥) for the Clayton copula, Λ2(𝑥𝑥) = 1 + 99

1+exp(−𝑥𝑥) for the Gumbel copula, and Λ2(𝑥𝑥) = 1
1+exp(−𝑥𝑥) for the BB1 copula. We also use 90º rotated 

copulas for the Clayton, Gumbel, and BB1 to allow for negative dependence. The 90º rotated copula is expressed as 𝐶𝐶90(𝑢𝑢1, 𝑢𝑢2) = 𝑢𝑢2 − 𝐶𝐶( 1 − 𝑢𝑢1, 𝑢𝑢2) where 𝐶𝐶(·,·) 

is the corresponding standard copula.  

In the second IFM step, the copula parameters are estimated as follows. First, 
we estimate the parameters of the dependence model for the green, neutral, 
and brown assets as represented in the upper panel of Figure 2 (common for all 
financial institutions), using sequential ML (Aas et al. 2009; Hobaek Haff, 2013), 
which consists of estimating bivariate copula parameters for the first tree level 
using the probability integral transformations from marginals as pseudo-sample 
observations, and then obtaining pseudo-sample observations from those copu-
las to estimate copula parameters for the next tree. Second, for each financial 
institution i we estimate the dependence structure of that financial institution with 
the market assets as represented in the lower panel of Figure 2. Bivariate copula 
parameters are estimated using sequential ML: copulas for the first tree are esti-
mated using both pseudo-observations from the second tree of the dependence 
model (the conditional copula values for green and brown assets) and pseudo-
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sample observations from the probability integral transformation of the marginal 
of returns for financial firm i, and then, from the bivariate copulas in the first tree 
we generate pseudo-observation to estimate the parameters of the copula in the 
second tree.

For estimation of all the bivariate dependencies represented in Figure 2, we use 
different bivariate copula specifications as reported in Table 2, selecting the most 
appropriate copula model using the AIC corrected for small sample bias (Brey-
mann et al., 2003).

3.  DATA

3.1.  Firm vulnerability to climate transition risk

To delimit climate transition scenarios, we need to categorize green, brown, and 
neutral asset returns. To that end, we use rated information on the vulnerability of 
the firm’s value to transition risk as reported by Sustainalytics – a widely recognized 
leading provider of environmental, social, and governance (ESG) information.

On an annual basis, Sustainalytics computes a rating called the carbon risk score 
(CRS), which is based on exposure to and management of carbon transition risk by 
firms in 146 subindustries. Carbon exposure, which largely depends on the type of 
business, measures the extent to which carbon risk is materialized across the firm’s 
value chain (including operations, products, and services). It is measured by sub-
industry and is specifically adjusted at the firm level by considering (a) company 
operations or product mix deviations with respect to its subindustry, and (b) the 
firm’s financial strength and geographical components that could undermine the 
firm’s capacity to address carbon risks. Management of carbon risk measures the 
firm’s management ability and quality in terms of reducing emissions and related 
carbon risks. Management, as characterized by implementation of company’s pol-
icies, programmes and systems in operations, products, and services, is ultimately 
reflected in (a) reductions in carbon emissions, (b) level of reliance on fossil fuels, 
and (c) development of greener products and services. Once carbon risk manage-
ment is accounted for, the remaining risk is unmanaged carbon risk, defined as 
unmanageable risks beyond the control of the company and manageable risks 
that have not been accounted for.
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For unmanaged carbon risk, Sustainalytics assigns a CRS that evaluates the ex-
tent to which the company’s value is placed at risk by transition to a low-carbon 
economy. Accordingly, firms are rated with a CRS between 0 and 100, reflecting 
negligible (0), low (1 to 9.99), medium (10 to 29.99), high (30 to 49.99), and severe 
(50 or more) carbon transition risk.12 As a transition risk measure, the CRS metric 
is more informative than carbon emissions according to Greenhouse Gas (GHG) 
Protocol Scopes 1, 2, and 3, as it considers not only carbon emissions information, 
but also policies and actions to manage the impact of transition to a low-carbon 
economy on a firm’s value. Moreover, information on CRS ratings is available to in-
stitutional and private investors, who can assess the resilience of their investments 
to climate transition risks (Reboredo and Otero, 2021).

Using firm-level CRS values, we sort firms into quintiles in such a way that they 
are categorized as green or brown when included in the first and fifth quintiles, 
respectively, and as neutral otherwise. The distinctive feature of green, neutral, 
and brown firms is their vulnerability to transition to a low-carbon economy, with 
green (brown) firms exhibiting the lowest (highest) risk exposure, and neutral firms 
having average risk exposure. Using returns for all firms within each category, we 
compute green, neutral, and brown returns as the average returns for the compa-
nies included in the corresponding category.13

3.2.  Data source

Our dataset includes both European financial firms and European listed firms 
that are annually rated with a CRS. The sample goes from 2013, when information 
on CRS at the firm level becomes available, to 2020, with all data sourced from 
Bloomberg.

The sample includes 939 European listed firms, representing 99.4% of the firms 
included in the Eurostoxx-600 index and 97% of market capitalization of that in-
dex at the end of 2020. Those firms are annually grouped into the green, neutral, 

12  For a detailed analysis of rating methods, see: https://www.morningstar.com/lp/low-carbon-
economy.
13  Alternatively, we could also use market weights to determine the returns of each asset cat-
egory, even though the dynamics of the returns for each category might be mainly determined 
by a single firm with large market capitalization.

https://www.morningstar.com/lp/low-carbon-economy
https://www.morningstar.com/lp/low-carbon-economy
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or brown asset categories, depending on whether they belong to the first CRS 
quintile, to the second, third or fourth CRS quintiles, or to the fifth CRS quintile, 
respectively. Weekly returns for each asset class are computed as the average of 
the log-returns of the assets in the corresponding category.

The sample of European financial firms includes 190 firms representing 85% of the 
Euro Stoxx financials index (data for the end of 2020): 43 banks (24 of which are 
classified as domestic systemically important banks by the Financial Stability Board 
in 2020), 36 insurance companies, 52 financial services companies, and 59 real 
estate firms. We consider various categories of financial firms given that their dif-
ferent business models are likely to affect their exposure to climate transition risks. 
Systemic risk for similar financial firms has been investigated by Engle et al. (2015) 
and for a similar set of banks by Borri and Giorgio (2021). By market capitalization 
(data for the end of 2020), the largest firms are as follows: HSBC, BNP Paribas, 
Banco Santander, and Intesa Sanpaolo (banks); Allianz, Chubb, Zurich Insurance, 
and AXA (insurance companies); UBS Group, London Stock Exchange, Deutsche 
Böerse, and Credit Suisse (financial services firms); and Deutsche Wohnen, Segro, 
Gecina, and LEG Immobilien (real estate firms). Total capitalization is 1,680 billion 
euros, for a median value of 10 billion euros. For all the financial firms, we compile 
data for weekly market prices in euros, and use data on debt book value and the 
market value of the equity in euros obtained from Compustat.

Table 3 presents summary statistics for the returns of different asset and financial 
firm categories. It confirms that green, neutral, and brown assets have dissimilar 
performances in terms of returns and volatilities, with green assets outperforming 
brown and neutral assets in terms of greater realized returns and lower volatility. 
Moreover, probability distributions of green, neutral, and brown assets also differ 
according to skewness and kurtosis information, and according to tail behaviour 
as reflected in the empirical value-at-risk (VaR) and expected shortfall (ES) values 
in the left and right sides of the distribution. Extreme movements in the green, 
neutral, and brown returns are dissimilar, with brown assets experiencing larger 
extreme downward movements than green assets.

For the financial sample, Table 3 shows that financial services companies outper-
form the other categories, while real estate and insurance companies have similar 
average returns. Banks yield average negative returns and display greater volatil-
ity than the other financial firms. All financial firms are characterized by higher 
volatility than market assets and also by negative skewness and fat tails. According 
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to the empirical VaR and ES metrics, banks show higher levels of tail risk than the 
other financial firms.

Table 3. Summary statistics for returns for different 
asset classes and financial firms.

 

 

Table 3. Summary statistics for returns for different asset classes and financial firms. 

 Market assets  Financial firms 

 
Green Neutral Brown 

 
Banks 

Insurance 
companies 

Financial 
services Real estate 

Return 0.19% 0.12% 0.01%  -0.07% 0.08% 0.12% 0.08% 

Volatility 2.34% 2.51% 3.09%  5.19% 3.81% 4.17% 4.08% 

Skewness -1.821 -2.025 -1.544  -0.613 -0.620 -0.773 -0.650 

Kurtosis 16.393 20.259 17.005  11.299 12.789 12.706 18.605 

Max. downturn -19.27% -22.27% -26.00%  -32.46% -24.49% -26.86% -28.86% 

Max. upturn 10.33% 11.02% 12.73%  23.83% 18.56% 19.44% 22.28% 

1st quartile -0.83% -0.90% -1.45%  -2.69% -1.69% -1.86% -1.69% 

3rd quartile 1.39% 1.36% 1.59%  2.73% 2.05% 2.31% 2.01% 

10% (left) VaR -2.81% -3.09% -3.94%  -6.72% -4.80% -5.22% -5.14% 

10% (left) ES -3.92% -4.28% -5.41%  -9.18% -6.60% -7.20% -7.07% 

10% (right) VaR 3.19% 3.33% 3.97%  6.59% 4.96% 5.47% 5.30% 

10% (right) ES 4.30% 4.51% 5.43%  9.04% 6.76% 7.45% 7.23% 

Notes. This table presents summary statistics for weekly returns in euros for green, neutral, and brown assets and 
for European financial firms over the sample period January 2013 to December 2020. For each asset category, we 
report the average returns, volatility, skewness, kurtosis, maximum downturn and upturn, 10% value-at-risk (VaR), 
and expected shortfall (ES) for the left and right sides of the return distribution. 
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Figure 3 shows the cumulative performance of green, neutral, and brown assets, 
along with the (average) cumulative returns for each financial institution category. 
Over the sample period, cumulative returns for green assets are above the cumu-
lative returns for brown assets, although the differences are slightly reduced in 
the last year of the sample period due to the COVID-19 pandemic. Financial firms 
show different patterns, with banks underperforming the other financial firms and 
experiencing severe cuts between mid-2015/mid-2016 and from the pandemic 
outset. Financial services and real estate returns display similar dynamics, closely 
co-moving with neutral asset returns.
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Figure 3. Cumulative returns for different asset classes and financial institutions.
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average impacts in three circumstances, as follows: (a) green and brown returns 
are above and below their respective median values, reflecting a disorderly transi-
tion scenario using median quantiles as thresholds; (b) brown and green returns 
are above and below their respective median values, reflecting a hothouse world 
scenario using medians as thresholds; and (c) green, neutral, and brown returns 
are below their 75% and above their 25% respective quantiles, consistent with an 
orderly transition scenario.

Panel A of Figure 4 shows the distribution of betas across the financial firms includ-
ed in different categories. The graphic evidence indicates that banks and insur-
ance companies are more exposed to brown than to green asset returns, whereas 
financial services and real estate firms are more sensitive to green and neutral 
asset returns than to brown assets. Banks overall show the highest average beta 
for brown returns. There is also wide dispersion in the betas within each financial 
firm category, with the betas for neutral assets exhibiting the greatest dispersion.

Figure 4. Exposure of financial firms to green, neutral, and brown asset returns.
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Panel A. Distribution of beta values for green, neutral, and brown asset returns. 
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Panel B. Distribution of average return impacts under different climate transition scenarios. 
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Consistent with the distribution of betas, the distribution of average impacts from 
different climate transition scenarios differs widely across and within different cat-
egories of financial firms, as reflected in Panel B of Figure 4. Specifically, banks 
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receive the highest positive and lowest positive average return impacts from a 
hothouse world scenario and a disorderly transition scenario, respectively, where-
as the opposite occurs for real estate firms. The average impact for insurance firms 
is similar for the different transition scenarios, while for financial services, the im-
pact of a disorderly transition scenario is slightly more positive than of a hothouse 
world scenario. Finally, graphically reflected is great heterogeneity in the size of 
the impact within and between climate transition scenarios.

4. � EMPIRICAL EVIDENCE ON THE SYSTEMIC IMPACT OF 
CLIMATE TRANSITION

4.1.  Model estimation

We start by estimating marginal model parameters for green, neutral, and brown 
asset returns and for each financial firm in our sample. Table 3 reports estimates, 
where the number of lags in the mean and variance specifications are the values 
that minimize the AIC, considering different values between 0 and 2. Evidence for 
green, neutral, and brown marginal densities reported in the first three columns 
of Table 4 shows that those returns exhibited no serial dependence, whereas con-
ditional variances were persistent and displayed significant positive leverage ef-
fects, with bad news having a greater impact on volatility than good news. The 
distribution of green, neutral, and brown assets is negatively skewed and has fat 
tails. Goodness-of-fit metrics for the model residuals point to the fact that no se-
rial correlation remains, in either the residuals in levels or the residuals squared, 
and that the skewed-t distribution adequately accounts for the asymmetry and tail 
return features, given that the Kolmogorov-Smirnov (KS) test supports uniformity 
in the standardized model residuals.

As the number of marginal models for the financial firms is large, rather than indi-
vidual parameter estimates and goodness-of-fit results, we report only summary 
statistics for firms grouped into the four categories reported in the last four col-
umns of Table 4. Overall, some financial firms show evidence of serial correlation 
in returns, volatility is persistent (mainly for banks), and there is some evidence of 
positive leverage effects for financial firms that is smaller in size than for market 
assets. Goodness-of-fit tests support the fitted marginal models, reporting no mis-
specification errors for any of the financial firms, and confirming that the return dis-
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tribution is well characterized by a skewed student-t with fat tails, which, in some 
cases, behaves as a symmetric student-t.

Table 4. Maximum likelihood parameter estimates of marginal 
models for different asset classes and financial firms.

 

 

 

Table 4. Maximum likelihood parameter estimates of marginal models for different asset classes 

and financial firms. 

 Market assets  Financial firms 

 
Green Neutral Brown  Banks 

Insurance 
companies 

Financial 
services Real Estate 

Mean         

𝜙𝜙0 0.002* 0.000 -0.001  -0.001 0.001 0.001 0.001 
(0.00) (0.01) (0.00)      

𝜙𝜙1  -0.411   0.045 -0.023 -0.054 -0.064 
 (0.92)       

𝜑𝜑1  0.111*   -0.085 0.091 -0.102 -0.093 
 (0.03)       

Volatility dynamics        
𝜔𝜔 0.000* 0.000* 0.000*  0.000 0.000 0.000 0.000  

(0.00) (0.07) (0.00)      
α1 0.086* 0.012* 0.013*  0.107 0.085 0.089 0.149  

(0.07) (0.01) (0.09)      
β1 0.656* 0.697* 0.795*  0.724 0.668 0.664 0.636 
 (0.32) (0.20) (0.40)      
𝛿𝛿1 0.241* 0.229* 0.190*  0.038 0.067 0.052 0.043 
 (0.08) (0.11) (0.13)      

Skewed-t distribution        
𝜆𝜆 -0.407* -0.399* -0.315*  -0.091 -0.123 -0.104 -0.064 

 (0.05) (0.05) (0.06)      
𝜗𝜗 5.692* 5.607* 7.148*  10.067 6.201 5.356 5.739  

(1.28) (3.23) (2.12)      

Goodness-of-fit        
LogLik -1078.41 -1047.99 -968.76  -713.51 -816.15 -848.26 -854.06 
LJ [0.67] [0.98] [0.71]  [0.65] [0.61] [0.60] [0.62] 
LJ2 [0.78] [0.97] [0.52]  [0.47] [0.58] [0.47] [0.47] 
ARCH-LM [0.98] [0.99] [0.97]  [0.57] [0.67] [0.65] [0.69] 
K-S [0.84] [0.78] [0.89]  [0.89] [0.88] [0.90] [0.88] 

Notes. This table presents parameter estimates of the marginal models for market assets (categorized as green, 
neutral, and brown) and for European financial firms (banks, insurance companies, financial services, and real estate) 
as per Eqs. (14)-(15). For markets assets, the z-statistic for the parameter estimates is reported in brackets. Parameter 
estimates for financial firms are the average of the parameter estimates for each financial firm. For asset markets, an 
asterisk denotes statistical significance at the 5% level. LogLik, LJ, and LJ2 denote the log-likelihood value of the 
marginal model, Ljung-Box statistics for serial correlation in the model residuals and in the squared model residuals, 
respectively, are computed with 20 lags. ARCH effects in the residuals are tested up to the 20th order using Engle’s 
Lagrange multiplier (ARCH-LM) test. KS denotes the Kolmogorov-Smirnov statistic for the null hypothesis of 
correct model specification (p values in square brackets). For financial institutions, goodness-of-fit information is 
the average of that information from all marginal models.  
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Using the probability integral transformation obtained from marginal model esti-
mations, we first estimate the market dependence structure (see the upper panel 
of Figure 2). Table 5 shows parameter estimates for the three estimated copulas 
that describe the dependence structure for green, neutral, and brown assets. The 
copula that best characterizes dependence between green and neutral assets is a 
static BB1 copula with average positive dependence and asymmetric tail depen-
dence (greater lower tail dependence). Dependence between brown and neutral 
assets is also well described by a BB1 copula, with positive dependence oscillat-
ing over time, basically influenced by one of the copula parameters. Finally, con-
ditional dependence between green and brown assets is well characterized by an 
independent copula.

Table 5. Parameter estimates of bivariate copula models 
for green, neutral, and brown market assets.

 

 

Table 5. Parameter estimates of bivariate copula models for green, neutral, and brown market assets. 

 Copula model Parameter estimates AIC 
𝐶𝐶𝑔𝑔𝑔𝑔(𝑢𝑢𝑔𝑔, 𝑢𝑢𝑛𝑛) BB1 𝜃𝜃 = 1.986∗ (0.21) 

𝛿𝛿 = 1.885∗ (0.12) 
-794.82 

𝐶𝐶𝑏𝑏𝑏𝑏(𝑢𝑢𝑏𝑏, 𝑢𝑢𝑛𝑛) BB1 𝜔̅𝜔𝜃𝜃 = 2.554 (3.58) 

𝛼̅𝛼𝜃𝜃 = −9.695 (18.38) 

𝛽̅𝛽𝜃𝜃 = 0.294 (0.71) 

𝜔̅𝜔𝛿𝛿 = −2.214∗ (0.18) 

𝛼̅𝛼𝛿𝛿 = 1.029 (2.29) 

𝛽̅𝛽𝛿𝛿 = 4.232∗ (0.22) 

-741.48 

𝐶𝐶𝑔𝑔𝑔𝑔|𝑛𝑛(𝑢𝑢𝑔𝑔|𝑢𝑢𝑛𝑛, 𝑢𝑢𝑏𝑏|𝑢𝑢𝑛𝑛) Independent — 0 

Notes. This table presents parameter estimates of the best copula fit for the copula models in Table 1 for 
pairings of green, neutral, and brown returns as represented in the upper panel of Figure 2. Standard errors 
were computed through simulation. An asterisk indicates significance of the parameter at the 1% level. The 
minimum AIC value adjusted for small-sample bias is reported in the last column. 
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Table 6 summarizes estimates of the dependence structure between financial firms 
and the market (see the lower (shaded) panel of Figure 2). Copula estimates indi-
cate that dependence between financial institutions and green returns is positive 
for most financial firms, with some evidence of independence for 22.2% of firms. 
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Likewise, dependence between financial firms and brown returns conditional on 
neutral asset returns is mostly positive and low, with evidence of independence 
for 31.1% of firms. Consistent with the market dependence information, green and 
brown returns conditional on neutral and financial firm returns are independent.

Table 6. Summary of the bivariate copula models for financial firms.

 

Table 6. Summary of the bivariate copula models for financial firms. 

 Copula model % institutions Summary of parameter estimates 
𝐶𝐶𝑔𝑔𝑔𝑔|𝑛𝑛(𝑢𝑢𝑔𝑔|𝑢𝑢𝑛𝑛, 𝑢𝑢𝑖𝑖) Gaussian 35.8 𝜌̂𝜌 = 0.13 [0.10, 0.18] 
 Student-t 2.6 𝜌̂𝜌 = 0.16 [0.08, 0.24] 

𝜐̂𝜐 = 26.33 [9.95, 50.93] 
 Clayton 33.7 𝜃𝜃 = 0.46 [0.24, 0.68] 
 90-Clayton 0.5 𝜃𝜃 = 0.64 [0.64, 0.64] 
 Gumbel 4.7 𝜃𝜃 = 1.11 [1.04,1.18] 
 90-Gumbel 0.5 𝜃𝜃 = 1.16 [1.16,1.16] 
 Independent 22.2 — 

𝐶𝐶𝑏𝑏𝑏𝑏|𝑛𝑛(𝑢𝑢𝑏𝑏|𝑢𝑢𝑛𝑛, 𝑢𝑢𝑖𝑖) Gaussian 39.5 𝜌̂𝜌 = 0.09 [0.01, 0.18] 
 Student-t 0.5 𝜌̂𝜌 = 0.06 [0.06, 0.06] 

𝜐̂𝜐 = 8.03 [8.03, 8.03] 
 Clayton 5.3 𝜃𝜃 = 0.33 [0.08, 0.61] 
 90-Clayton 8.4 𝜃𝜃 = 0.27 [0.04, 0.40] 
 Gumbel 13.2 𝜃𝜃 = 1.16 [1.13, 1.20] 
 90-Gumbel 2.1 𝜃𝜃 = 1.15 [1.09,1.21] 
 Independent 31.1 — 

𝐶𝐶𝑔𝑔𝑔𝑔|𝑖𝑖𝑖𝑖(𝑢𝑢𝑔𝑔|𝑢𝑢𝑖𝑖, 𝑢𝑢𝑛𝑛; 𝑢𝑢𝑏𝑏|𝑢𝑢𝑖𝑖, 𝑢𝑢𝑛𝑛) Gaussian 0.5 𝜌̂𝜌 = −0.02 [−0.02, −0.02] 
 Independent 99.5 — 

Notes. This table presents a summary of the bivariate copula parameter estimates for the best copula fit between 
financial firms and the market as represented in the lower (shaded) panel of Figure 2. The third column indicates the 
percentage of financial firms for which bivariate dependence indicated in the first column is given by the copula 
function indicated in the second column. The last column reports average copula parameter estimates for the 
corresponding copula model, with the numbers in square brackets indicating the interquartile range. 
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4.2.  �Evidence on the systemic risk impacts of 
climate transition scenarios

Using information from the bivariate copulas that characterize the market and the 
dependence structure for financial firms, for the sample period we compute the 
systemic risk impact for each financial firm arising from each climate transition sce-
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nario (hothouse world, disorderly transition, and orderly transition). Specifically, at 
each time t we compute the values for the systemic metrics, i.e., CTER, CTVaR, and 
CTES, for confidence levels of 𝛼 =  0.20, 𝛽 =  0.20, and 𝛾 =  0.10, and for quantiles 
𝐹𝑗(𝑞𝑗

𝑈) = 0.60 and 𝐹𝑗(𝑞𝑗
𝐿) = 0.40 for 𝑗 =  𝑔, 𝑛, 𝑏.14

4.2.1.  Systemic risk impacts of climate transition scenarios

Figure 5 depicts estimates of the three systemic risk metrics for the different types 
of financial institutions. As CTER is an additive measure, aggregated values for each 
financial institution type are obtained as the weighted average of the individual 
values, weighted by the market value of each firm over the total market value of all 
financial firms in that category. Since CTVaR and CTES are not additive measures, 
for each climate transition scenario we report median values in the cross-section 
sample, along with 25% and 75% percentile values (represented by shaded areas).

Figure 5 highlights dissimilar temporal dynamics patterns of the systemic risk im-
pact of climate transition scenarios for different types of financial firms. For the 
CTER metric, Panel A of Figure 5 shows that the value of all financial firms deterio-
rates in a hothouse world scenario. However, the decline in CTER from a hothouse 
world scenario is of a smaller size for banks (average value of -0.8%, receiving 
positive impacts at specific time periods), while real estate firms receive the largest 
impact (average value of -2.3%). This evidence is consistent with the diverse expo-
sure of financial firms to different type of assets, with banks more exposed to brown 
asset than real estate firms (see Figure 4). The impact of a hothouse world scenario 
is therefore more severe for real estate firms than for banks. In contrast, real estate 
firms and financial services firms are positively affected by a disorderly transition, 
while banks receive a negative impact and insurance companies a slightly positive 
impact. Not surprisingly, the effects of the COVID-19 pandemic are reflected in all 
the transition scenarios, even despite the systemic impact from a disorderly transi-
tion scenario being higher for banks than for the remaining firms. For all financial 
firms, the impact of an orderly transition scenario is negligible.

Interestingly, median values and interquartile ranges for represented in Panel B of 
Figure 5 also reflect the greater exposure of banks to brown assets, as estimates 

14  Those confidence levels correspond to empirical quantiles for green, neutral, and brown 
weekly returns, respectively, as follows: -1.27, -1.44, -1.99;.21, -0.07, -0.19;.87, 0.76, 0.75; 1.66, 
1.58, 1.89. The online appendix provides a robustness check for different confident levels.
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Figure 5. Systemic risk of climate transition scenarios 
for different financial firm types.
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for banks in a hothouse world scenario are higher (average value of -4.8%) than 
in a disorderly transition scenario (average value of -7.2%); this is due to the fact 
that banks are more positively impacted by upturns in brown asset CTVaR prices 
than by upturns in green asset prices. Remarkably, the opposite is observed for 
insurance, financial services, and real estate firms, where the value of is higher in 
the disorderly transition scenario than in the hothouse world scenario (e.g., for 
real estate firms, average CTVaR values are -2.2% and -5.5% in the former and 
latter scenarios, respectively). Also, the non-banking sector presents higher cross-
section heterogeneity than the banking sector, especially in the hothouse world 
scenario. in mind in any regulation regarding that risk.

Table 7. Summary statistics for climate transition systemic risk measures.
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 Climate transition scenarios 

 Disorderly transition Hothouse world Orderly transition 

Panel A. Banks    

CTER -0.0081 (0.0030) -0.0081 (0.0155) -0.0012 (0.0006) 
CTVaR -0.0722 (0.0189) -0.0485 (0.0144) -0.0532 (0.0145) 
CTES -0.1003 (0.0268) -0.0792 (0.0232) -0.0806 (0.0216) 

Panel B. Insurance companies   

CTER 0.0013 (0.0019) -0.0132 (0.0121) 0.0013 (0.0010) 
CTVaR -0.0357 (0.0126) -0.0555 (0.0188) -0.0371 (0.0120) 
CTES -0.0609 (0.0210) -0.0873 (0.0306) -0.0589 (0.0192) 

Panel C. Financial services   

CTER 0.0053 (0.0039) -0.0265 (0.0130) 0.0012 (0.0016) 
CTVaR -0.0323 (0.0096) -0.0664 (0.0169) -0.0406 (0.0110) 
CTES -0.0596 (0.0176) -0.1058 (0.0261) -0.0645 (0.0173) 

Panel D. Real estate    

CTER 0.0221 (0.0103) -0.0232 (0.0111) 0.0012 (0.0016) 
CTVaR -0.0225 (0.0089) -0.0550 (0.0224) -0.0366 (0.0138) 
CTES -0.0460 (0.0166) -0.0851 (0.0334) -0.0575 (0.0211) 

Notes. This table presents mean and standard deviation values (in parenthesis) for the three climate 
transition systemic risk measures, CTER, CTVaR, and CTES, computed weekly over the sample period 
2013-2020 for the entire sample and for different categories of financial firms under three different 
climate transition scenarios. 
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Panel C of Figure 5 shows that expected tail losses for insurance, financial services, 
and real estate firms are larger in a hothouse world scenario that in a disorderly 
transition scenarios, and that the opposite occurs for banks. The temporal dynam-
ics of the median CTES is similar to the dynamics of, with abrupt downward move-
ment in the COVID-19 period.

All in all, evidence on the impact of different climate transition scenarios for dif-
ferent types of financial firms are, not surprisingly, consistent with the degree of 
exposure of those institution to changes in green and brown asset prices.

Table 7 presents descriptive statistics for the three risk metrics under different 
scenarios, considering the whole set and different categories of financial firms 
as presented in Figures 4 and 5. Descriptive results confirm the above-described 
graphical evidence.

4.2.2. � Systemic risk effects of climate transition 
scenarios for individual firms

Table 8 presents average values over the sample period for the three systemic risk 
measures in the three climate transition scenarios for the four largest institutions 
within each category. The evidence in Table 8, consistent with the graphical evi-
dence reported in Figure 4, is that financial institutions are diverse in terms of the 
impact of different scenarios.

Regarding the banking sector, the CTER, CTVaR, and CTES systemic risk metrics 
point to improved performance in a disorderly transition scenario and deterio-
rated performance in a hothouse world scenario for the two largest banks, HSBC 
and BNP Paribas. In contrast, the systemic risk metrics for Santander and Intesa 
Sanpaolo, more exposed to brown than to green assets, deteriorate more in a 
disorderly transition scenario than in a hothouse world scenario. This empirical 
evidence confirms that banks differ widely in terms of their exposure to climate 
risk,15 a fact that needs to be borne 

For the four largest insurance firms, the evidence indicates that CTER, CTVaR and 

15  For example, the French banking sector holds a higher share of loans to low emitters than 
Spanish or Italian banking sectors (Alogoskoufis et al., 2021).
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CTES average values are better for Alliance, Chubb and AXA in a disorderly tran-
sition scenario compared to a hothouse world scenario, whereas the impact on 
Zurich of any of the three climate transition scenarios is fairly similar.

Finally, for the largest firms within the financial services and real estate categories, 
average CTER, CTVaR, and CTES values confirm enhanced performance in a dis-
orderly transition scenario compared to a hothouse world scenario. This finding, 
corroborating the evidence for the financial services and real estate firms overall, 
as presented in Figures 4 and 6, suggests that those firms, on the whole, are well 
positioned for transition to a low-carbon economy in which green (brown) firms 
would be revalued upwards (downwards).

Table 8. Average values for climate transition 
systemic risk for individual institutions.

 

 

Table 8. Average values for climate transition systemic risk for individual institutions. 

 Climate transition scenarios 

 Disorderly transition Hothouse world Orderly transition 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 

Panel A. Banks          
HSBC 0.0107 -0.0173 -0.0401 -0.0739 -0.1684 -0.2053 0.0001 -0.0288 -0.0388 
BNP Paribas 0.0161 -0.0226 -0.0538 -0.0916 -0.2099 -0.2488 0.0023 -0.0379 -0.0519 
Santander -0.018 -0.0784 -0.1106 0.0458 -0.033 -0.0637 -0.0038 -0.0589 -0.0902 
Intesa Sanpaolo -0.0013 -0.0604 -0.0914 0.0132 -0.0604 -0.0934 -0.0029 -0.0611 -0.0918 

Panel B. Insurance         
Alliance -0.0037 -0.0404 -0.0659 -0.0157 -0.0827 -0.1516 0.0029 -0.0338 -0.0549 
Chubb 0.0071 -0.023 -0.0408 -0.0273 -0.0819 -0.1207 0.0032 -0.0285 -0.0436 
Zurich 0.0001 -0.0343 -0.0571 0.0174 -0.032 -0.057 0.0000 -0.0331 -0.0552 
Axa -0.0036 -0.0468 -0.072 -0.0026 -0.1122 -0.1696 0.0001 -0.0433 -0.0645 

Panel C. Financial services         
UBS Group -0.0059 -0.0492 -0.077 -0.0204 -0.0942 -0.1612 0.0002 -0.0437 -0.0676 
London Stock 0.0297 -0.0111 -0.0399 -0.026 -0.0802 -0.1309 0.0033 -0.0389 -0.0673 
Deutsche Böerse 0.0188 -0.0168 -0.0399 -0.0161 -0.0601 -0.0899 0.002 -0.0353 -0.0566 
Credit Suisse 0.012 -0.0344 -0.0669 -0.087 -0.1939 -0.2429 0.0009 -0.0502 -0.0724 

Panel D. Real estate         
Deutsche Wohnen 0.0205 -0.0156 -0.0389 -0.0466 -0.1197 -0.1589 0.0043 -0.0328 -0.0508 
Segro 0.0392 -0.0119 -0.0322 -0.0119 -0.0501 -0.0696 0.0012 -0.0341 -0.051 
Gecina 0.012 -0.0235 -0.0436 -0.0109 -0.05 -0.0722 0.001 -0.0343 -0.0521 
LEG Immobilien 0.0207 -0.0128 -0.0312 -0.0154 -0.0515 -0.0721 0.0027 -0.0299 -0.0455 

Notes. This table presents average values for three climate transition systemic risk measures, CTER, CTVaR, and CTES, computed weekly over the 2013-2020 period 
for the four largest individual firms within each category, considering three different climate transition scenarios.  
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Notes. This table presents average values for three climate transition systemic risk measures, CTER, CTVaR, and CTES, computed weekly over the 2013-2020 period 
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4.2.3. � Systemic risk impact of climate transition 
scenarios for individual countries

To explore the systemic risk of climate transition scenarios for individual coun-
tries, for CTER (additive) we compute average values for each financial institution 
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in each country and aggregate those values using, as weights, the market value 
of each firm over the total market value of all financial firms in the corresponding 
country. For CTVaR and CTES (non-additive), we obtain the average value for each 
financial firm in each country over the sample period and take the median values 
of the averages as indicative of the VaR and ES.

Figure 6. Systemic risk of climate transition scenarios by country.
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Figure 6 depicts the systemic impact of the three climate transition scenarios on 
the European countries included in our sample. In a disorderly transition scenario, 
the financial systems of Finland, France, and Norway benefit, given that their finan-
cial firms show higher (lower) exposure to green (brown) than to brown (green) 
assets. More specifically, average CTER values are higher than in other countries 
and CTVaR and CTES values also indicate better tail risk performance. In contrast, 
the financial systems of Ireland, Portugal, Poland and Spain are the countries most 
exposed to a disorderly transition, displaying the poorest performance for CTER, 
and also for tail risk, which is particularly high for the Italian financial system. Over-
all, most European countries show vulnerability to a disorderly transition scenario.

Regarding the hothouse world scenario, Figure 6 indicates that the financial sys-
tems of Portugal, Ireland, Luxembourg, and Spain would benefit, increasing their 
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CTER average and reducing tail risk in terms of CTVaR and CTES with respect to the 
other European countries. In contrast, the financial systems of Finland, France, and 
Norway show a poorer profile in terms of average returns and tail risk metrics. It is 
important to remark that, although the southern European financial sector incurs 
fewer losses in the hothouse scenario, this scenario would trigger harmful physical 
climate events in the Mediterranean countries.16

Finally, for an orderly transition scenario, the evidence points to the financial sys-
tems of Ireland and Portugal as the poorest performers in terms of CTER and also 
in terms of tail risk, while the best performers in terms of tail risk are the financial 
systems of Finland, Switzerland, and Belgium.

Taken together, the overall picture of climate transition risk across European finan-
cial systems is very diverse, with countries ranking differently depending on the cli-
mate transition scenario. This result might be a consequence of loan portfolios that 
are different depending on the country where the financial institution is located.

5. CAPITAL IMPLICATIONS OF CLIMATE TRANSITION RISK

To assess the implication of each climate transition scenario in terms of capital 
shortfalls for financial firms, following Brownlees and Engle (2017), we define the 
climate transition capital shortfall (CTCS) for a financial institution  at time t as:

where  is the one-year-ahead climate transition 
expected returns, representing the expected change in equity under a specific 
climate transition stress scenario (e.g., computed as per Eq. (5) for a disorderly 
transition scenario), is the fraction of assets that the financial firm has to reserve in 
the case of a crisis (the prudential capital ratio), 𝐷𝑖,𝑡 is the debt book value, and 𝑊𝑖,𝑡 

is the equity market value. The CTCS, given by the difference between the required 
and available capital, is a forward-looking metric, as it relies on expected change 
in the market value of financial institution . The dynamics of the CTCS is not only 
influenced by the impact on returns of the climate transition scenario, as given by 
the CTER, but also by the dynamics of market capitalization and debt. From the 

16  See ACPR and Banque de France (2021) and Alogoskoufis et al. (2021).
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CTCS, we can define the climate transition systemic capital shortfall (CTRISK) for a 
financial institution  as a positive capital shortfall value:

Using information on the debt book value, market capitalization for each financial 
firm (sourced from Compustat), and CTER values (as reported in the previous sec-
tion and expressed on an annual basis), we compute CTCS and CTRISK values for 
the different climate transition scenarios, considering a capital ratio of 𝑘=5.5%.17 
Figure 7 represents the dynamics of the total CTRISK value for the four most im-
pacted firms and the remaining firms within each category, showing that capital 
shortfall differs across financial firms and over time.

Banks experience substantial capital shortfalls from a disorderly transition sce-
nario, at average values of about 40 billion euros, peaking at 120 billion euros 
during a high-risk period (such as a COVID-19-like pandemic). Substantial differ-
ences exist between banks, with the four most impacted banks accounting for a 
small fraction of the total capital shortfall. For those banks, Table 9 presents aver-
age CTRISK values, indicating that, in a disorderly transition scenario, the most 
impacted banks, excepting Santander, experience average capital shortfalls that 
represent an important fraction of their market capitalization. In contrast, in a hot-
house world scenario, and even though average values for total CTRISK are quite 
similar to those for a disorderly transition scenario, there is great dispersion be-
tween banks, with the most four impacted banks accounting for a large fraction 
of the total CTRISK value — primarily Credit Agricole (average CTRISK value repre-
senting 65% of its market capitalization). The capital impact of an orderly transition 
scenario is moderate, with average values of around 5 billion euros, and is con-
centrated in the most affected banks, with capital shortfalls representing a small 
fraction of their market capitalization. Overall, the empirical estimates point to a 
relatively manageable impact on bank capital of climate transition – in comparison 
with a financial crisis, when capital consumption is substantially greater; see, e.g., 
Engle et al. (2015) who report an average capital shortfall in a financial crisis of 
around 400 billion euros for European banks. The effects of climate transition in 
terms of positive capital shortfalls are concentrated in a small number of entities, 
and interestingly, as the average CTCS value is below zero, those positive capital 
shortfalls are absorbable by the banking sector.

17  This ratio, also used by Engle et al. (2015) for European financial firms, ensures no capital 
shortfall for a leverage of 18.2.



Premios de investigación: accesit en 2022.

46

Figure 7. Capital shortfall from climate transition 
scenarios for financial institution types. 

 

Figure 7. Capital shortfall from climate transition scenarios for financial institution types. 

 Banks Insurance companies 

D
is

or
de

rly
 tr

an
si

tio
n 

  

H
ot

ho
us

e 
w

or
ld

 

  

O
rd

er
ly

 tr
an

si
tio

n 

  
 

 

  



Climate transition risks and financial stability.

47
 

Figure 7. (cont.) 
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Table 9. Average capital shortfall impact of climate 
transition scenarios on individual firms.
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 Climate transition scenarios 

Disorderly transition Hothouse world Orderly transition 

 CTRISK Market Cap.  CTRISK Market Cap.  CTRISK Market Cap. 

Panel A. Banks         
UniCredit S 8249 27877 Credit Agricole 19274 29675 Commerzbank 1277 10399 
Commerzbank 6072 10399 HSBC 13071 142005 Natixis 778 14932 
RBS 3519 35177 BNP Paribas 7772 62636 UniCredit S. 745 27877 
Santander 2289 70038 Svenska H. AB 525 21385 Unione Banche I.. 687 4053 

Panel B. Insurance        
Swiss Life H. AG 48 8773 Aviva PLC 421 19562 CNP Assurances 3 10818 
CNP Assurances 45 10818 Phoenix Group H. 119 3593 Beazley PLC 1 2543 
Jardine Lloyd TG 6 3375 Legal General G. 93 17019 Zurich Insurance 0 38941 
Beazley PLC 0 2543 Prudential PLC 39 44925 Willis Towers W. 0 13929 

Panel C. Financial services        
Deutsche Bank AG 6141 26307 Credit Suisse 11477 31120 Deutsche Bank AG 334 26307 
Mediobanca 332 6719 UBS Group AG 816 52165 Mediobanca 128 6719 
Grenke AG 6 2565 Mediobanca 458 6719 Aker ASA 0 2558 
Axactor AB 4 182 Investec PLC 445 5513 Schroders PLC 0 9149 

Panel D. Real estate        
Intu Properties 18 3452 Fastighets Balder 205 3473 Fabege AB 6 2796 
Fabege AB 4 2796 Swiss Prime 155 5164 Intu Properties 4 3452 
CPI Property 2 3904 Immofinanz AG 146 2538 I. Colonial 3 2784 
Grand City P. 1 2464 Klovern AB 111 1383 Grand City P. 2 2464 

Notes. This table presents mean values (in millions of euros) for capital shortfall as given by the CTRISK for the four most impacted firms in each group under the three climate 
transition scenarios. Market Cap. denotes average market capitalization over the sample period 2013-2020. 
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Panel B. Insurance        
Swiss Life H. AG 48 8773 Aviva PLC 421 19562 CNP Assurances 3 10818 
CNP Assurances 45 10818 Phoenix Group H. 119 3593 Beazley PLC 1 2543 
Jardine Lloyd TG 6 3375 Legal General G. 93 17019 Zurich Insurance 0 38941 
Beazley PLC 0 2543 Prudential PLC 39 44925 Willis Towers W. 0 13929 

Panel C. Financial services        
Deutsche Bank AG 6141 26307 Credit Suisse 11477 31120 Deutsche Bank AG 334 26307 
Mediobanca 332 6719 UBS Group AG 816 52165 Mediobanca 128 6719 
Grenke AG 6 2565 Mediobanca 458 6719 Aker ASA 0 2558 
Axactor AB 4 182 Investec PLC 445 5513 Schroders PLC 0 9149 

Panel D. Real estate        
Intu Properties 18 3452 Fastighets Balder 205 3473 Fabege AB 6 2796 
Fabege AB 4 2796 Swiss Prime 155 5164 Intu Properties 4 3452 
CPI Property 2 3904 Immofinanz AG 146 2538 I. Colonial 3 2784 
Grand City P. 1 2464 Klovern AB 111 1383 Grand City P. 2 2464 

Notes. This table presents mean values (in millions of euros) for capital shortfall as given by the CTRISK for the four most impacted firms in each group under the three climate 
transition scenarios. Market Cap. denotes average market capitalization over the sample period 2013-2020. 

For insurance companies, capital shortfall estimates, depicted in Figure 7, show 
that these are barely affected in the orderly and disorderly transition scenarios, 
except during the COVID-19 pandemic, when capital shortfall peaks at 1 billion 
euros. However, capital shortfall is mostly affected in a hothouse world scenar-
io. Table 9 evidences that capital losses for insurance firms are concentrated in a 
small number of firms and are mainly affected by the hothouse world scenario, but 
overall representing a small percentage of their market capitalization.

Regarding financial services, Figure 7 shows that those firms are particularly af-
fected in a hothouse world scenario, with average capital shortfall over the sample 
period of 15 billion euros; this figure is reduced by half in a disorderly transition 
scenario, and shrinks to less than 1 billion euros in an orderly transition scenario. 
As for insurance firms, Table 9 indicates that capital shortfalls for the most impact-
ed financial service firms represent a small fraction of their market capitalization, 
with the exception of Deutsche Bank AG in the disorderly transition scenario.

Finally, Figure 7 shows that capital shortfalls for real estate firms are negligible in 
the disorderly and orderly transition scenarios, and although capital shortfalls are 
larger in a hothouse world overall, as reported in Table 9, they represent a small 
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Figure 8. Capital shortfall (CTRISK) from climate transition scenarios by country. 
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Premios de investigación: accesit en 2022.

50

fraction of firm capitalization. This evidence is consistent with the greater unfa-
vourable impact on real estate firms of a hothouse world scenario.

Figure 8 represents the impact of climate transition risks on capital shortfalls 
across countries as given by total CTRISK, showing that countries react differently 
to alternative climate transition scenarios. Thus, Germany, Italy, and Spain need to 
assume greater capital shortfalls in a disorderly transition scenario, France, United 
Kingdom, and Switzerland in a hothouse world scenario, and Italy, Germany, and 
France in an orderly transition scenario.

6. PROSPECTIVE CLIMATE TRANSITION RISK IMPACTS

To assess how climate transition scenarios could impair future financial firm re-
turns, we consider a forward-looking period of five years, simulating the depen-
dence structure for the market and financial firm i (as represented in Figure 2) over 
the next  periods, with h = 1,…, 260 weeks. Each simulation s = 1,…S, where S 
denotes the total number of simulations, is performed in two steps: we first simu-
late the market structure (as represented in the upper panel of Figure 2), which 
is common to all the financial institutions, and we then simulate the dependence 
structure for each financial firm i with the market (as represented in the lower pan-
el of Figure 2).

In the first step, at time  we use information up to T+h-1 within each simulation 
to update the copula parameters for the three bivariate copulas, , 

, and , where , and 
denote the respective copula parameters. These parameters may change accord-
ing to the dynamics indicated in Table 1, or may remain stable if the estimated 
copulas are static ( ,  and ). We next draw a 
sample s from the C-vine structure to obtain ,  and  using the algo-
rithm in Aas et al. (2009),18 and use this information to update copula parameters 
for the period T+h+1 in each simulation path.

In the second step, we simulate the dependence structure for each financial in-
stitution i with the market at time  as follows. To simulate  given the 

18  A detailed explanation of the simulation of the C-vine structure is provided in the Appendix.
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market information on ,  and , we need the conditional copula 
. This copula derives from the joint copula density of 

institution  and the market as:

where  denotes the copula density.19 To simulate , we sample 
a uniform variable  on [0,1], with the simulated value of  solving 

.

The values for ,  and  can be computed using information 
on the conditional copulas at time , and information on the return distribution 
of the financial institution,  . The parameters that characterize that distribution 
are  and , which remain constant over time, and  and , which fluctuate 
with changes in the dynamics given by the ARMA-GARCH model of returns for finan-
cial institution . The values of those two last parameters are obtained from the sim-
ulated value of  by plugging ) as  into Eq. (14) — to obtain 

 from the ARMA(p,q) structure for p or q higher than zero — and again in Eq. (15) 
— to obtain , where  denotes the inverse of the standardized skewed-t of 
financial institution  with parameters  and . Finally, from the set of S simulations 
we obtain the simulated value of the three systemic risk metrics as:  

, , and . Similarly, 
we can aggregate CTER by category G as  and ob-
tain confidence intervals as   
where  is one if A holds and zero otherwise.

Figure 9 depicts simulated evidence on the impact of the three climate transition 
scenarios on the financial stability of financial firms, as given by CTER and its 5% 
and 95% percentile values over five years for 𝑆=5000 simulations. Figure 9 reveals 
that sensitivity to climate transition risks varies across different types of financial 
firms. Banks can be expected to be at a significant disadvantage in a disorderly 
transition scenario, face high uncertainty in a hothouse world scenario (where the 
confidence interval ranges between positive and negative values), and receive 
modest impacts in an orderly transition scenario. Insurance firms can expect simi-
larly moderate systemic risk impacts in the disorderly and orderly transition sce-

19  The expression for copula density is reported in the Appendix.
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narios, but negative impacts in a hothouse world scenario. Financial services, and 
especially real estate firms, are likely to experience significant systemic risk effects 
in the hothouse world scenario, but clearly improved returns in the disorderly and 
orderly transition scenarios. Overall, this evidence is consistent with the evidence 
reported for the in-sample period.

Figure 9. Simulated CTER value over five years under 
different climate transition scenarios. 

 

Figure 9. Simulated CTER value over five years under different climate transition scenarios. 
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7. CONCLUSIONS

Moving towards a greener economy involves risks for the value of financial assets, 
with repricing effects (Carney, 2016) potentially having an impact on the stability 
of financial systems. In this paper, we address how climate transition risk, through 
its effects on asset prices, could impact financial stability. To that end, we charac-
terize the behaviour of financial firm returns conditional on the dynamics of mar-
ket returns for green, neutral, and brown assets (reflecting low, neutral, and high 
vulnerability, respectively) in the transition to a low-carbon economy. We consider 
three climate transition scenarios coherent with the narrative of the Network of 
Central Banks and Supervisors for Greening the Financial System, namely, disor-
derly transition, orderly transition, and no transition (hothouse world), featured in 
terms of relative changes in green, neutral, and brown asset prices arising from 
disrupted business models due to changes in the timing and speed of the adjust-
ment towards a low-carbon economy. We then assess the systemic risk impact of 
those scenarios on financial firms in terms of the average return (climate transi-
tion expected returns), the minimum returns with some confidence level (climate 
transition value-at-risk), and the average return below that minimum threshold (cli-
mate transition expected shortfalls), accounting for average and tail effects from 
transition scenarios for the value of financial firms.

We apply our methodology to European financial firms (banks, insurance com-
panies, financial services companies, and real estate firms) over the period 2013-
2020. Our main findings are that the systemic impact of climate transition sce-
narios varies widely across financial institutions. Banks experience more systemic 
impacts in the disorderly transition scenario than in the hothouse world scenario, 
while the opposite occurs for the other financial firm types, but especially for real 
estate firms. We also find that the systemic impact of the different climate tran-
sition scenarios is widely divergent within financial firm types, yielding potential 
winners and losers.

We also assess the implications of climate-related systemic risk in terms of capital 
shortfalls. For banks, capital shortfalls are negligible in the orderly transition sce-
nario; however, in the disorderly transition and hothouse world scenarios, capital 
shortfalls are sizeable, although concentrated in a small number of entities and 
absorbable within the banking sector. For the remaining financial firms, we find 
that insurance firms experience small capital shortfalls in any climate transition 
risk scenario, whereas financial services and real estate firms experience modest 
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capital losses in a hothouse world scenario, and negligible capital losses in the 
remaining scenarios.

A forward-looking simulation of prospective climate transition measures for the 
upcoming five-year period suggests the following: banks may be at a significant 
disadvantage in a disorderly transition scenario, financial services and real estate 
firms are likely to experience significant systemic risk effects in the hothouse world 
scenario, and the systemic risk impacts for insurance firms are moderate in size 
and similar across the disorderly and orderly climate transition scenarios.

The implications of this study go beyond risk management, as it provides a useful 
methodology for generating stress test scenarios for climate risk. Regulatory and 
supervisory authorities might also find in this study a flexible tool for evaluating 
the performance of financial firms under different distress scenarios coherent with 
the transition to a low-carbon economy, taking into account financial fears in the 
market through nonlinearities and tail dependencies.

 

REFERENCES

Aas, K., Czado, C., Frigessi, A., Bakken, H., 2009. Pair-copula constructions of multiple 
dependence. Insurance: Mathematics and Economics 44(2), 182-198.

Acharya, V.V., Pedersen, L.H. Philippon, T., Richardson, M.P., 2017. Measuring systemic 
risk. Review of Financial Studies 30, 2-47.

Adrian, T., Brunnermeier, B., 2016. CoVaR. American Economic Review 106(7), 1705-
41.

Alessi, Lucia and Battiston, Stefano (2021). Two sides of the same coin. EU Taxonomy 
Alignment and Transition Risk Exposure of financial portfolios. JRC Working pa-
per, 2021.

Alogoskoufis, S., Dunz, N., Emambakhsh, T., Hennig, T., Kaijser, M., Kouratzoglou, C., 
Muñoz, M.A., Parisi, L. and Salleo, C. (2021). ECB economy-wide climate stress 
test: Methodology and results (No. 281). ECB Occasional Paper.



Climate transition risks and financial stability.

55

Autorité de Contrôle Prudentiel et de Résolution and Banque de France (2021), A first 
assessment of financial risks stemming from climate change: The main results of 
the 2020 climate pilot exercise, Analyses et syntheses, No 122/2021, Paris, April.

Bank of England, 2017. The Bank of England’s response to climate change. Quarterly 
Bulletin 2017 Q2 article.

Battiston, S., Mandela, A., Monasterolo, I., Schütze, F., Visentin, G., 2017. A climate 
stress-test of the financial system. Nature Climate Change 7, pages 283–288.

Bedford, T., Cooke, R.M., 2002. Vines: a new graphical model for dependent random 
variables. Ann. Stat. 30, 1031–1068.

Benoit, S., Colliard, J.E., Hurlin C., Pérignon, C., 2017. Where the Risks Lie: A Survey on 
Systemic Risk. Review of Finance, 109–152.

Borri, N., Giorgio, G., 2021. Systemic risk and the COVID challenge in the European 
banking sector. Journal of Banking and Finance, forthcoming.

Breymann, W., Dias, A., Embrechts, P., 2003. Dependence structures for multivariate 
high frequency data in finance. Quantitative Finance 3, 1–16.

Brownless, C.T., Engle, R., 2017. SRISK: A Conditional capital shortfall measure of sys-
temic risk. Review of Financial Studies 30(1), 48-79.

Campiglio, E., Dafermos, Y., Monnin, P., Ryan-Collins, J, Schotten, G. and Tanaka, M., 
2018. Climate change challenges for central banks and financial regulators. Na-
ture Climate Change 8, 462-468.

Carney, M., 2015. Breaking the tragedy of the horizon – climate change and fi-
nancial stability. Speech by Mark Carney at Lloyds of London, available 
at http://www.bankofengland.co.uk/publications/Pages/speeches/2015 
/844.aspx

Dafermos, Y., Nikolaidi, M. Galanis, G., 2018. Climate Change, Financial Stability and 
Monetary Policy. Ecological Economics 152, 219-234.

De Nederlandsche Bank, 2017. An exploration of climate-related risks for the Dutch 
financial sector. Available at https://www.dnb.nl/en/binaries/Waterproof_tcm47-
363851.pdf?2017110615.

Engle, R., Jondeau, E., Rockinger, M., 2015. Systemic Risk in Europe. Review of Finance 
19, 145–190.

ESRB, 2016. Too late, too sudden: transition to a low-carbon economy and systemic 

http://www.bankofengland.co.uk/publications/Pages/speeches/2015/844.aspx
http://www.bankofengland.co.uk/publications/Pages/speeches/2015/844.aspx
https://www.sciencedirect.com/science/article/pii/S0921800917315161
https://www.sciencedirect.com/science/article/pii/S0921800917315161
https://www.sciencedirect.com/science/journal/09218009
https://www.dnb.nl/en/binaries/Waterproof_tcm47-363851.pdf?2017110615
https://www.dnb.nl/en/binaries/Waterproof_tcm47-363851.pdf?2017110615
file:///F:/__TRABAJOS_ACTIVOS/REIMPVENTA%20libro%202022%20accesit%20ANTONIO%20DIONIS/del%20cliente/javascript:;
file:///F:/__TRABAJOS_ACTIVOS/REIMPVENTA%20libro%202022%20accesit%20ANTONIO%20DIONIS/del%20cliente/javascript:;
file:///F:/__TRABAJOS_ACTIVOS/REIMPVENTA%20libro%202022%20accesit%20ANTONIO%20DIONIS/del%20cliente/javascript:;


Premios de investigación: accesit en 2022.

56

risk. Reports of the Advisory Scientific Committee No. 6, available at www.esrb.
europa.eu/pub/pdf/asc/Reports_ASC_6_1602.pdf.

Hobaek Haff, I., 2013. Bernoulli. Parameter estimation for pair-copula constructions 
19(2), 462–491.

Joe, H., 1997. Multivariate models and dependence concepts. In: Monographs in Sta-
tistics and Probability 73. Chapman and Hall, London.

Joe, H., Xu, J.J., 1996. The estimation method of inference functions for margins for 
multivariate models. Technical Report No. 166. Department of Statistics, Universi-
ty of British Columbia.

Jung, H., Engle, R., Berner, R., 2021. Climate stress testing. Federal Reserve Bank of 
New York Staff Reports, no. 977.

Kurowicka, D., Cooke, R.M., 2006. Uncertainty Analysis with High Dimensional Depend-
ence Modelling. John Wiley, Chichester.

Laeven, L., Ratnovski, L., Tong, H., 2016. Bank size, capital and systemic risk: some inter-
national evidence. Journal of Baking and Finance 69, S25-S34.

Nelsen, R.B., 2006. An Introduction to Copulas. Springer-Verlag, New York.

Network for Greening the Financial System, 2020. NGFS Climate Scenarios for cen-
tral banks and supervisors. https://www.ngfs.net/en/ngfs-climate-scenarios-cen-
tral-banks-and-supervisors.

Patton, A.J., 2006. Modelling asymmetric exchange rate dependence. International 
Economic Review 47(2), 527-556.

Stolbova, V., Monasterolo, I., Battiston, S., 2018. A Financial Macro-Network Approach 
to Climate Policy Evaluation. Ecological Economics 149, 239-253.

Reboredo, J.C. and Otero, L.A., 2021. Are investors aware of climate-related transition 
risks? Evidence from mutual fund flows. Ecological Economics 189, 107148.

Weyzig, F., Kuepper, B., van Gelder, J.W., Van Tilburg, R., 2014. The Price of Doing Too 
Little Too Late. Technical report.

http://www.esrb.europa.eu/pub/pdf/asc/Reports_ASC_6_1602.pdf
http://www.esrb.europa.eu/pub/pdf/asc/Reports_ASC_6_1602.pdf
https://www.ngfs.net/en/ngfs-climate-scenarios-central-banks-and-supervisors
https://www.ngfs.net/en/ngfs-climate-scenarios-central-banks-and-supervisors


Climate transition risks and financial stability.

57

APPENDIX

A. Proof of Result 1

Proof of Eq. (1). We can express the joint probability  from inte-
gration of the neutral asset as:

where the conditional probabilities can be written using copulas as 
 and 

, where    as . Given that that 
, it follows that the joint probability in term of copulas is:

 
Proof of Eq. (2). We compute  for a range of 
quantiles around the median, such that ,  and 

 . Hence, , , ,  
 , , and . 

We can express the joint probability from integration of the neutral asset in the 
range of quantiles around its median as:

where the joint conditional probability  can be de-
composed as:

 
 

The following figure represents the unit square for the joint distribution be-
tween conditional green and brown returns, illustrating the decomposition 
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of the joint probability. The joint conditional probability we are looking for, 
, is given by box 1, with this box size decomposed as 

the total size of boxes 1, 2, 3, and 4 ( ) minus the size of boxes 2 
( ), 3 ( ), and 4 ( ).
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Each of those four probabilities can be obtained from conditional copulas as: 

a) 𝑃𝑃(𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏
𝑈𝑈, 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔

𝑈𝑈| 𝑟𝑟𝑛𝑛) = 𝐶𝐶𝑏𝑏𝑏𝑏|𝑛𝑛 (𝐶𝐶𝑏𝑏|𝑛𝑛 (0.5 + 𝛼𝛼
2 |𝑢𝑢𝑛𝑛) , 𝐶𝐶𝑔𝑔|𝑛𝑛 (0.5 + 𝛽𝛽

2 |𝑢𝑢𝑛𝑛)) 

b) 𝑃𝑃(𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏
𝐿𝐿, 𝑟𝑟𝑔𝑔 ≤ 𝑞𝑞𝑔𝑔

𝐿𝐿| 𝑟𝑟𝑛𝑛) = 𝐶𝐶𝑏𝑏𝑏𝑏|𝑛𝑛 (𝐶𝐶𝑏𝑏|𝑛𝑛 (0.5 − 𝛼𝛼
2 |𝑢𝑢𝑛𝑛) , 𝐶𝐶𝑔𝑔|𝑛𝑛 (0.5 − 𝛽𝛽

2 |𝑢𝑢𝑛𝑛)) 

c) 𝑃𝑃(𝑞𝑞𝑏𝑏
𝑈𝑈 ≥ 𝑟𝑟𝑏𝑏 ≥ 𝑞𝑞𝑏𝑏

𝐿𝐿, 𝑟𝑟𝑔𝑔 ≤  𝑞𝑞𝑔𝑔
𝐿𝐿|𝑟𝑟𝑛𝑛) = 𝐶𝐶𝑏𝑏𝑏𝑏|𝑛𝑛 (𝐶𝐶𝑏𝑏|𝑛𝑛 (0.5 + 𝛼𝛼

2 |𝑢𝑢𝑛𝑛) , 𝐶𝐶𝑔𝑔|𝑛𝑛 (0.5 − 𝛽𝛽
2 |𝑢𝑢𝑛𝑛)) −

𝐶𝐶𝑏𝑏𝑏𝑏|𝑛𝑛 (𝐶𝐶𝑏𝑏|𝑛𝑛 (0.5 − 𝛼𝛼
2 |𝑢𝑢𝑛𝑛) , 𝐶𝐶𝑔𝑔|𝑛𝑛 (0.5 − 𝛽𝛽

2 |𝑢𝑢𝑛𝑛)) 

d) 𝑃𝑃(𝑟𝑟𝑏𝑏 ≤ 𝑞𝑞𝑏𝑏
𝐿𝐿, 𝑞𝑞𝑔𝑔

𝑈𝑈 ≥ 𝑟𝑟𝑔𝑔 ≥  𝑞𝑞𝑔𝑔
𝐿𝐿|𝑟𝑟𝑛𝑛) = 𝐶𝐶𝑏𝑏𝑏𝑏|𝑛𝑛 (𝐶𝐶𝑏𝑏|𝑛𝑛 (0.5 − 𝛼𝛼

2 |𝑢𝑢𝑛𝑛) , 𝐶𝐶𝑔𝑔|𝑛𝑛 (0.5 + 𝛽𝛽
2 |𝑢𝑢𝑛𝑛)) −

𝐶𝐶𝑏𝑏𝑏𝑏|𝑛𝑛 (𝐶𝐶𝑏𝑏|𝑛𝑛 (0.5 − 𝛼𝛼
2 |𝑢𝑢𝑛𝑛) , 𝐶𝐶𝑔𝑔|𝑛𝑛 (0.5 − 𝛽𝛽

2 |𝑢𝑢𝑛𝑛)) 

Hence, the joint conditional probability can be obtained from copulas as: 

𝑃𝑃(𝑞𝑞𝑏𝑏
𝑈𝑈 ≥ 𝑟𝑟𝑏𝑏 ≥ 𝑞𝑞𝑏𝑏

𝐿𝐿, 𝑞𝑞𝑔𝑔
𝑈𝑈 ≥ 𝑟𝑟𝑔𝑔 ≥  𝑞𝑞𝑔𝑔

𝐿𝐿|𝑟𝑟𝑛𝑛)
= 𝐶𝐶𝑏𝑏𝑏𝑏|𝑛𝑛 (𝐶𝐶𝑏𝑏|𝑛𝑛(𝑎𝑎|𝑢𝑢𝑛𝑛), 𝐶𝐶𝑔𝑔|𝑛𝑛(𝑏𝑏|𝑢𝑢𝑛𝑛)) + 𝐶𝐶𝑏𝑏𝑏𝑏|𝑛𝑛 (𝐶𝐶𝑏𝑏|𝑛𝑛(𝑑𝑑|𝑢𝑢𝑛𝑛), 𝐶𝐶𝑔𝑔|𝑛𝑛(𝑒𝑒|𝑢𝑢𝑛𝑛))
− 𝐶𝐶𝑏𝑏𝑏𝑏|𝑛𝑛 (𝐶𝐶𝑏𝑏|𝑛𝑛(𝑎𝑎|𝑢𝑢𝑛𝑛), 𝐶𝐶𝑔𝑔|𝑛𝑛(𝑒𝑒|𝑢𝑢𝑛𝑛)) − 𝐶𝐶𝑏𝑏𝑏𝑏|𝑛𝑛 (𝐶𝐶𝑏𝑏|𝑛𝑛(𝑑𝑑|𝑢𝑢𝑛𝑛), 𝐶𝐶𝑔𝑔|𝑛𝑛(𝑏𝑏|𝑢𝑢𝑛𝑛)), 

where 𝑎𝑎 = 0.5 + 𝛼𝛼
2, 𝑏𝑏 = 0.5 + 𝛽𝛽

2, 𝑑𝑑 = 0.5 − 𝛼𝛼
2 and 𝑒𝑒 = 0.5 − 𝛽𝛽

2. 

Plugging the joint conditional probability into the integral and taking into account that 𝑑𝑑𝑢𝑢𝑛𝑛 =
𝑓𝑓𝑛𝑛(𝑟𝑟𝑛𝑛)𝑑𝑑𝑑𝑑𝑛𝑛, we can rewrite the joint probability in term of copulas as: 

0

12

3 4

Each of those four probabilities can be obtained from conditional copulas as:

Hence, the joint conditional probability can be obtained from copulas as:
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where ,  and .

Plugging the joint conditional probability into the integral and taking into account 
that  , we can rewrite the joint probability in term of copulas as:

 

B. Proof of Result 2

Proof of Eq. (3). The joint density between returns for financial firm i and the disor-
derly transition scenario can be written as:

Note that, consistent with the dependence structure in Figure 1, . More-
over, , where last two 
conditional probabilities can be written in terms of copulas as:

, and

Since , the joint density can be expressed in terms of cop-
ulas as:
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Proof of Eq. (4). We can express the joint density 
 as:

where, in turn, the first density of this last expression can be decomposed as:

 
 

Hence,

Since , the joint 
conditional probability can be expressed in terms of copulas as:

Using this last expression, and given that , the joint den-
sity of the financial firm and the orderly transition scenario can be expressed as: 
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C. Proof of Eq. (5)

Since  and , we can write the previous expression 
as:

 
D. Proof of Eq. (6)

For an orderly climate transition scenario we have:

 

where  is given by Eq. (5). Plugging the 
value of the joint density  as given by Eq. 
(7) into , and taking into account that  and , 

, the expected shortfall for an orderly transition can be expressed in 
terms of copulas as:
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E. Proof of Result 3

Proof of Eq. (7). The joint probability  is given by the 
difference between  and . 
The first probability is defined as:

where, in the second equality, . Note that  is 
different from  as the unconditional distribution of  differs from the distribution 
of i conditional on a climate transition scenario,  is a quantile of that con-
ditional distribution. The second probability can be obtained as:

where . From the copula representation of those two probabilities, 
we therefore have:
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E. Proof of Result 3

Proof of Eq. (7). The joint probability  is given by the 
difference between  and . 
The first probability is defined as:

where, in the second equality, . Note that  is 
different from  as the unconditional distribution of  differs from the distribution 
of i conditional on a climate transition scenario,  is a quantile of that con-
ditional distribution. The second probability can be obtained as:

where . From the copula representation of those two probabilities, 
we therefore have:

Proof of Eq. (8). Using the joint density  in 
Result 2, we can obtain the joint probability   

 as:

 

In terms of copulas, this is:

 
F. Proof of Result 4

Using Result 2 and taking into account that , it follows that:

and that:
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where  and  
are given by Result 2.

G. Proof of Eq. (11)

 is given by copulas as the ratio between  
 and the conditioning probability , 

which can be expressed in terms of copulas as shown in the proofs of Results 1 
and 3. Thus,  can be written as:

The value of this ratio is a function of . We denote the ratio as a function 
. Since , then . Hence,  

.

H. Proof of Eq. (12)

In a disorderly transition,  is given by:

We can rewrite the joint density in the previous expression as:
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where  and  
. Those last two conditional probabilities can be written in 

terms of copulas as:

Now, plugging those results into , and taking into 
account that , we can write

I. Proof of Eq. (13)

According to Result 2, we can rewrite the joint density in the previous expression 
as:

Now, taking into account that , we have:
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J. Simulation

Below we describe how to sample from the C-vine characterizing dependence 
between market assets. Using the algorithm in Aas et al. (2009), we draw a sample 
s from the C-vine structure to obtain  and .

We first sample three independent uniform variables in [0,1]: 𝜔1, 𝜔2  and 𝜔3. Next:

(a) we set ;

(b) given that , therefore  can be obtained as 
 ;

(c) since , we 
have , and thus 

.

Regarding the conditional copula density of financial firm  in the market, 
, it can be seen as a ratio of two probabilities, i.e.:

where c(…) indicates the copula density. According to the dependence structure 
presented in Figure 2, we define  as:

 

where ,  and  denote the respective copula parameters that 
are updated using information up to  according to the dynamics indicated in 
Table 1, or alternatively, remain stable if the best fit copula is static. Thus, by plug-
ging the copula density into the conditional copula density, then simplifying – by 
cancelling the parts of the copula density in the numerator and denominator that 
are not affected by the integration – we have:
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where
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