

Aplicaciones de la IA a la gestión de riesgo en entidades financieras

Usos de la IA en modelos de Riesgo de Crédito

Rubén García Céspedes

Barcelona 27 de Febrero 2024

Índice

- 01 Introduccion
- O2 Usos en Riesgo de Crédito
- 03 Explicabilidad
- O4 Retos y conclusiones

Introduccion

La inteligencia artificial promete ser una revolución comparable a la revolución industrial en el siglo XVIII

¿Que es la inteligencia artificial? Según wikipedia "La inteligencia artificial (IA), en el contexto de las ciencias de la computación, es una disciplina y un conjunto de capacidades cognoscitivas e intelectuales expresadas por sistemas informáticos o combinaciones de algoritmos cuyo propósito es la creación de máquinas que imiten la inteligencia humana para realizar tareas, y que pueden mejorar conforme recopilen información"

¿Que es el Aprendizaje Automático? Según wikipedia "El aprendizaje automático (AA); también llamado automatizado, computacional o de máquinas (del inglés machine learning, ML), es el subcampo de las ciencias de la computación y una rama de la inteligencia artificial, cuyo objetivo es desarrollar técnicas que permitan que las computadoras aprendan"

Los modelos de regresión clásicos caen dentro de la definición de IA y ML

Introducción

Según publicaciones del Banco de España:

- "...We observe that ML
 delivers predictive gains of
 up to 20 % in default
 classification compared
 with traditional statistical
 models..."
- "...could yield savings from 12.4% to 17% in terms of regulatory capital requirements..."

Principales tipologías de modelos de Riesgo de Crédito

Admisión y Seguimiento

Modelos para **ordenar los clientes** en función de su probabilidad de impago , en la admisión o posteriormente.

Suelen ser ejes de las estimaciones de capital. Se requiere el OK del supervisor

Cobranzas

Modelos para **ordenar los clientes** en función de su recuperabilidad o % de pérdida estimada

El uso de ML en Riesgos requiere de

Impacto en Negocio

Modificaciones en Infraestructura (IT)

Requerimientos de Capital

Se emplean los modelos de admisión y seguimiento junto con ejes adicionales. Se requiere el OK del **supervisor**

Provisiones

Se emplean los modelos de admisión y seguimiento junto con ejes adicionales. Se requiere el OK del **auditor**

Usos en Riesgo de Crédito

El desarrollo robusto de modelos de ML comparte el 90% de las fases para desarrollar modelos clásicos

Fases de Modelizacion

Modelos de Cobranzas (KPI-Provisiones)

Modelos de preventiva/EWS:

- Prob. de **impago** en el corto plazo
- No es necesario segmentar por tipología de cliente o info

Modelos de roll-rates:

- Prob. de **avanzar** en los días de impago
- No es necesario segmentar por bucket de días

Modelos de ranking de agencias:

- Identificar la **mejor agencia** para un cliente en impago
- Incluido **grupo de control** para futuras re-estimaciones

Modelos de propensión al pago:

- Probabilidad o % de recuperación de un cliente
- Tanto en el **corto** como en el **largo** plazo

Modelos de contactabilidad:

■ Mejor canal/momento de contacto para clientes

Aprendizaje por refuerzo:

- Definición de la **mejor acción** para recuperar dado un target de largo plazo
- Incluido grupo de exploración

Modelos de Admisión y seguimiento (KPI-Vol. Admisión)

Modelos de límites/ingresos:

- Estimación de ingresos de clientes
- Definición de **límites** en función de los ingresos estimados

Modelos de admisión:

- Reactivos en geografías Cap. Estandard
- Algunas entidades cuentan con reactivos en IRB

Modelos comportamentales:

- En geografias Cap. Estandard
- **Explicabilidad** de impactos en **provisiones**

Otros usos

Identificación de ejes adicionales de segmentación:

• Árboles para completar el eje de la puntuación

Generación de datos sintéticos (poco estudiado):

- En Low Default Portfolios
- En datos faltantes para MoCs de Cap. Reg.

Explicabilidad de los modelos de Machine Learning

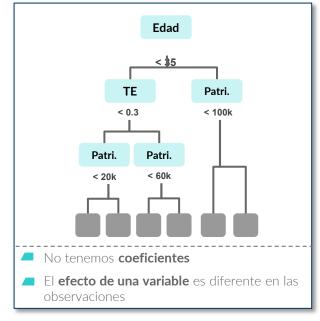
Los modelo de ML son complejos y a veces son llamados "cajas negras"

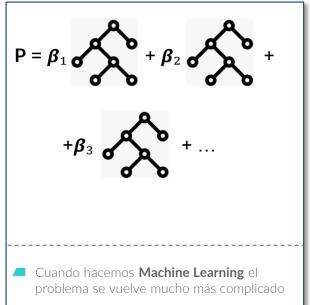
Regresión IA-1.0

+ Complejidad + Complejidad Árbol de decisión IA-2.0 — Machine Learning IA-3.0 (*) + Precisión

PDefault = $\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$

- **Opción 1**: Valor de los coeficientes para entender el efecto
- **Opción 2**: Coeficientes y valores. Cuanto afecta a la variabilidad final
- **Opción 3**: Correlación entre variables
- Si uso el coef entonces el efecto de una variable es igual para todas las observaciones
- Se capturan efectos medios en la población





(*) El uso de Redes Neuronales (Deep Learning) presenta retos adicionales que por el momento dificultan su uso

Explicabilidad de los modelos de Machine Learning

¿Para qué quiero entender lo que hay dentro de un modelo de ML?

- Controlar **comportamientos indeseados**, ej. de intervención humana en su construcción:
 - "Que a más ingresos peor sea el output del modelo de scoring", es necesario un análisis caso a caso
 - "Alucinaciones" de los modelos de redes neuronales
 - Garantizar la equidad sobre determinados colectivos, genero, edad... No se trata únicamente de eliminar esas variables ya que puede haber correlaciones con otras
 - Explicar impactos posteriores en provisiones/capital así como su dinámica
- Entendimiento por parte de los **usuarios de los modelos**
- Regulacion:
 - Genérica GDPR y Al Act, los sistemas de calificación para concesión de créditos son sistemas de Alto-Riesgo
 - Bancaria CRR y EBA
 - Se están **empezando** a usar modelos de ML para requerimiento de capital regulatorio
 - Pero se piden **analisis** "... Assess the economic relationship of each risk driver with the output variable to ensure that the model estimates are plausible and intuitive ..."

Retos y Conclusiones

Se han hecho avances importantes para el uso de modelo de ML en funciones de riesgos por las entidades financieras y los reguladores

- El ML tiene **ventajas** tanto para las **entidades** como para los **clientes** por inclusión financiera gracias a una mejor **diferenciación**
- Cambio cultural y de infraestructuras en las entidades, Equipos de Negocio y Riesgos, Ingeniería, Riesgos, Validacion Interna.... Es necesaria formación específica para facilitar la transición
- Adaptación de la gobernanza interna específica para los modelos de ML. Tanto para su desarrollo y validación como seguimiento
- Profundización en las técnicas de explicabilidad (Lime/SHAP/Permutation) en el proceso de modelización y uso. Una capa de explicabilidad es requerida en el uso de los modelos
- Variables protegidas (ej. género) no pueden ser incluidas en el modelo. Es necesario el desarrollo de un marco de equidad más profundo (Modelo vs Políticas)
- Problemas de **infraestructura** principalmente en las fases de despliegue (por ejemplo, limitaciones de los motores de riesgos para desplegar ciertos algoritmos)
- Reflexión del Regulador sobre la aplicación de modelos ML para carteras IRB. Enfoque actual en carteras bajo capital estandard y casos de uso de modelos no regulatorios

Aplicaciones de la IA a la gestión de riesgo en entidades financieras

Usos y limitaciones en modelos de Riesgo de Crédito

Rubén García Céspedes

Barcelona 27 de Febrero 2024